

AmazingStoke: A Facebook game for
the Not-For-Profit sector

Joanna Pinto

MSc Computer Science Project Report
Department of Computer Science and Information Systems,

Birkbeck College, University of London 2011

This proposal is substantially the result of my own work,
expressed in my own words, except where explicitly

indicated in the text. I give my permission for it to be
submitted to the JISC Plagiarism Detection Service.

The proposal may be freely copied and distributed

provided the source is explicitly acknowledged.

i

Abstract

In this report I describe the design and development of the
online game AmazingStoke for the not-for-profit sector. The
game aims to engage players in real-world actions for not-for-
profit organisations. The game is played via the social
networking platform Facebook, and utilises recent research in
the fields of online and alternate reality games (ARGs). The
topic is first introduced with a review of the background and
findings of the initial project proposal. Then follows
AmazingStoke systems analysis and design using UML
diagramming techniques. This report includes a discussion of
the implementation of the various system components, followed
by a walkthrough of the system. The AmazingStoke system is
evaluated in terms of initial goals, and possible future
extensions to the system are discussed. The conclusion of this
report is that a useful prototype system has been developed,
with potential for development into a genuinely valuable tool
for not-for-profit organisation.

ii

Table of Contents
Chapter 1: Introduction .. 1

1.1 Why Tackle This Problem? .. 1

1.2 The Approach ... 2

1.3 Assumed Knowledge.. 2

1.4 Terminology ... 3

1.5 Roadmap Of Remaining Chapters.. 3

Chapter 2: Background ... 5

2.1 Not-For-Profit Organisations And Online Gaming .. 5

2.2 The Facebook Platform .. 6

2.3 The Client-Server Model And Facebook Apps .. 6

2.4 Authentication Of Challenges By AmazingStoke Players 7

Chapter 3: System Analysis and Design .. 8

3.1 System Requirements ... 8

3.1.1 High-Level Goals .. 9

3.1.2 Requirements From Research Questionnaire .. 11

3.1.3 FURPS Requirements Specification .. 12

3.1.4 Use Case Models ... 15

3.2 System Design .. 17

3.2.1 Identifying Conceptual Classes ... 17

3.2.2 Domain Model ... 17

3.2.3 Model, View, Controller .. 18

3.2.4 Identifying Different Views ... 19

3.2.5 Identifying Core Functionality .. 20

3.2.6 Graphics ... 21

3.3 NFP Site Design ... 22

3.3.1 Use Of A Database .. 22

iii

3.3.2 Use Of Sessions In NFP Site ... 22

3.3.3 Adding A Challenge .. 22

3.3.4 Design Class Diagram (NFP Site) ... 24

3.4 Game Design .. 25

3.4.1 Use of Sessions In Game ... 25

3.4.2 Logging In To Game ... 25

3.4.3 Buying Buildings ... 27

3.4.4 Authenticating A Challenge .. 29

3.4.5 Viewing Charity Information & Viewing Tasks ... 30

3.4.6 Design Class Diagram (Game) .. 32

3.5 Database Design ... 33

Chapter 4: Implementation ... 36

4.1 Technologies .. 37

4.1.1 Database: SQL / MySQL Database ... 37

4.1.2 PHP .. 37

4.1.3 JavaScript... 39

4.1.4 WAMP Development Stack .. 40

4.1.5 Facebook API .. 40

4.1.6 Hosting... 42

4.2 First Iteration Of The System ... 44

4.2.1 First Iteration Of The MySQL Database ... 44

4.2.2 First Iteration Of NFP Site... 46

4.2.3 First Iteration of Game .. 54

4.3 Second Iteration Of The System .. 64

4.3.1 Second Iteration Of NFP Site .. 64

4.3.2 Second Iteration Of Game ... 68

4.4 Third Iteration Of The System ... 72

iv

Chapter 5: Demonstration .. 73

5.1 NFP Site ... 74

5.1.1 Login .. 74

5.1.2 Update Details ... 76

5.1.3 Add A Challenge ... 77

5.1.4 View Voucher Codes ... 78

5.1.5 Generate More Voucher Codes ... 80

5.1.6 Logout .. 81

5.2 Game .. 82

5.2.1 Create Account Via Facebook ... 82

5.2.2 Log Back In Via Facebook .. 84

5.2.3 Buy A Building .. 85

5.2.4 View And Accept A New Challenge ... 87

5.2.5 View NFP Information .. 88

5.2.6 Authenticate A Challenge .. 89

5.2.7 Update A Player’s MarvelMoney On Login ... 91

Chapter 6: Areas For Exploration ... 92

6.1 Development Technologies .. 92

6.2 System Functionality .. 94

6.3 Further Developments .. 95

Chapter 7: Conclusions ... 97

References

Appendix A: Use Cases

Appendix B: Code (as attached CD)

1

Chapter 1: Introduction
This report describes the design and development of AmazingStoke, an online game to aid
not-for-profit organisations such as charities in engaging with new and existing supporters.
AmazingStoke is played via the social networking site Facebook (Facebook Inc., 2011) with
player information saved between sessions of the game. Alongside the game interface for
players, the system includes a separate website for not-for-profit organisations to update their
game information regarding their organisations.

Using the AmazingStoke system, not-for-profit organisations are able to list specific real-
world challenges for their supporters, such as:

 donating money to the organisation

 using the player social networks to publicise the organisation

 completing volunteering activities.

Organisations can reward AmazingStoke players with a customisable amount of in-game
credits, known as MarvelMoney. From the players’ perspective, these MarvelMoney credits
can be used within a city-building game (following the model of popular online games such
as CityVille (Zynga Game Network Inc., 2011). Points are used to purchase virtual houses,
schools, shops and similar to create a unique “virtual town”. AmazingStoke also features ways
to earn points without necessarily taking on new challenges for not-for-profit organisations.
The overall concept of “gamification” of real-world experiences has been given the name of
alternate reality gaming (McGonigal, 2011) and was discussed extensively in the original
project proposal.

1.1 Why Tackle This Problem?
The AmazingStoke system was developed in response to research carried out with the not-for-
profit sector specifically for this project and included in the original project proposal. Twelve
not-for-profit organisations completed an online questionnaire about their current and
anticipated future use of social media technologies to engage with their supporters.
Organisations that completed the questionnaire included Anti-Slavery International,
Greenpeace, the British Association for Adoption & Fostering (BAAF) and Marie Curie
Cancer Care.

The research, together with other reports and studies, found that whilst many organisations
within the not-for-profit sector were using social media to engage with supporters, people
working within the sector felt that there was scope for more diverse forms of engagement
than currently being used. The results were discussed in-depth in original project proposal.

2

1.2 The Approach
The AmazingStoke system is a cross-organisational platform, which can be used by any
registered UK charity. By allowing many organisations to use one system, AmazingStoke
allows players to discover and learn more about other charitable organisations using
AmazingStoke.

To create both the game and the not-for-profit organisations’ website, it was necessary to
incorporate technologies allowing dynamic user interaction within a web browser, and a
system for storing information between sessions. Decisions related to the selection of the
appropriate technologies are described in Chapter 4.

This project followed an iterative Rapid Application Development (RAD) approach to the
development, with prototype systems developed early in the implementation. This is
important in a web-based application, particularly one accessed via Facebook, as there are a
number of issues relating to compatibility with different web-browsers, and unique
constraints of a web application accessed via the Facebook platform. It was necessary to
utilise a design methodology which could be incremental (i.e., not all system requirements
known in advance) and involved prototyping, as RAD does (Avison & Fitzgerald, 2002).

1.3 Assumed Knowledge
It is assumed that the reader has an understanding of:

 the concept of the World Wide Web as a collection of interactive pages, and of web
browser technologies, in particular Internet Explorer, Firefox and Chrome (listed by the
W3Schools website as the most commonly used browsers at the time of writing) (W3C,
2011)

 the HTML mark-up language for the formatting of web pages (as covered in the module
Internet and Web Technologies) (Moller & Schwartzbach, 2006)

 HTML forms and the use of GET and POST HTTP request methods to pass information
from a client-side page to a server-side program (as covered in the module Internet and
Web Technologies) (Comer, 2004)

 the JavaScript language’s Document Object Model (DOM) (as covered in the module
Internet and Web Technologies) (Jacobs, 2006)

 object-oriented systems design and programming concepts, and the UML modelling
framework (as covered in the module Object-Oriented Design and Programming)
(Larman, 2004)

 relational databases including normalisation of databases, and the SQL language for
definition and manipulation of relations (as covered in the module Data and Knowledge
Management) (Ramakrishna & Gehrke, 2003)

3

The Facebook platform may be unfamiliar to readers, so a brief summary is included in
Chapter 2.

1.4 Terminology
The term “not-for-profit organisation” is used to describe organisations using the
AmazingStoke system. The system is initially envisaged for use only by organisations which
are UK charities registered with either the Charity Commission for England and Wales
(Charity Commission, 2011) or the Office of the Scottish Charity Regulator (Office of the
Scottish Charity Regular, 2011). From this point forward the term not-for-profit organisation
will be replaced with NFP or NFPs, which are commonly used acronyms within the sector.

The following formatting conventions are used within this report.

For sections of code given as examples, the following formatting is used:

1. <?php
2. echo “Hello World!”
3. ?>

Names of parts of the system identifies as conceptual classes in UML modelling are
identified by the following formatting:

 Players, or

 NFPs

References to functions or variables, or to file names, are identified by the following
formatting:

 mysql_fetch_row, or

 $_POST, or

 index.php

1.5 Roadmap Of Remaining Chapters
Chapter 2: Background

Provides an introduction to the aims of the AmazingStoke system. Goals of the system
defined in Section 2.1. Looks in greater detail at the Facebook platform and at the
technologies used to build an online game integrated into Facebook. Outlines the main
technologies for dynamic web-sites and data storage used in the design and implementation
of the system.

4

Chapter 3: System Analysis and Design

Works through the design process in clear stages, using UML modelling techniques to
illustrate the development of the proposed system. Outlines the design of the three main
components of the system – the underlying data storage system, the website for NFPs to
manage their accounts including adding challenges and updating organisational information,
and the game played via Facebook.

Chapter 4: Implementation

Describes the implementation of the AmazingStoke system. Describes the iterative
development of the system with layers of complexity and functionality being added in with
successive iterations. Complications and challenges are described and solutions presented,
with representative examples of code where appropriate.

Chapter 5: Evaluation

Gives walk-throughs of the key activities of the system, presenting screenshots and
descriptions of the processes used by the distinct user groups (players and NFPs) to achieve
their goals within the system.

Chapter 6: Areas For Exploration

Discusses areas for further development of the system beyond the scope of the project.

Chapter 7: Conclusions

Reviews the overall project, comparing against initial objectives with final system. Review of
personal goals. Evaluation of the approach.

5

Chapter 2: Background

2.1 Not-For-Profit Organisations And Online Gaming
Before undertaking this MSc in Computer Science at Birkbeck College, University of
London, I spent four years working in the fundraising and communications team of a national
UK charity, the British Association for Adoption & Fostering (BAAF). During that time, I
was struck by two observations.

Firstly, that NFPs often used social and (non-computer) gaming events to raise money and
build awareness of the organisation. Such events include fun runs, quiz evenings, fancy-dress
events (such as the annual “Moonwalk” for charity where supporters decorate bras and walk
through London to raise money for Breast Cancer Awareness).

Secondly, I was aware that NFP organisations were exploring ways to use web-based
technologies to create greater engagement with supporters. I was personally involved with the
setting up of BAAF’s own Facebook page, with the updating of BAAF’s account on micro-
blogging site Twitter (Twitter, 2011), with handling moneys raised via online donations sties
JustGiving (JustGiving, 2011) and Virgin Money Giving (Virgin Money, 2011), and charity
video website See The Difference (See The Difference, 2011) (all discussed in the original
project proposal).

Whilst studying for this MSc in Computer Science, I became aware of the body of work
looking at overlapping online gaming with real-world social engagement. I discussed in the
original project proposal the work of game designer Jane McGonigal, who created online
games such as World Without Oil (Eklund & McGonigal, 2007). I also discussed games
such as FreeRice (UN World Food Programme, 2009), UK charity Save The Children’s
involvement with online game Second Life (Gibson, 2006), and other overlapping of real-
world engagement with online gaming.

Although the concept of using online gaming by NFPs to create greater engagement with
supports is not novel, there seemed to be a lack of an easy-to-use online game suitable for use
by multiple charities on a large scale, in the way that Virgin Money Giving and JustGiving
delivered online solutions to sponsorship of fundraising challenges for individuals. The
AmazingStoke system was therefore been developed to meet the specific goals of:

 A single online game that can be used by multiple organisations

 Easily accessible via standard web browsers

 Each NFP has the ability to load customised tasks for supporters to complete into the
game

 Rewards real-world actions with online in-game credits

6

2.2 The Facebook Platform
Facebook is a free-to-use site where individuals register to create a profile of personal
information (such as name, date of birth, current place of residence, relationship status, and
photo) which is displayed as a web-page within the site. It is commonly referred to as a social
networking site, although it describes itself as a “social utility”. Once a user has created a
profile, they are able to send requests to link other registered users to become “friends” on the
site, meaning they are able to view one another’s profiles and other shared information. Users
can post public or private messages to other users, share media such as videos or pictures.
Organisations can set up pages of information for users to access in-site.

Facebook also has a wide range of optional mini-programs that users can choose to access,
known as apps, which run within frames in the main Facebook site (Facebook Developers,
2011). The technology used to display these apps is the iframe, discussed in the original
project proposal.

The decision to use the Facebook platform was discussed in the original project proposal.

2.3 The Client-Server Model And Facebook Apps
The client-server model of a web-based application was discussed in the original project
proposal. It was also explained that in the case of a Facebook app, the client-server
architecture is slightly more complicated. The Facebook site use iframes to deliver apps,
meaning that in in-line frame within the Facebook site displays the page hosted by the
application server. Although it appears to the player that they are viewing a single page, the
view is actually made up of web page loaded within a web page. The overview of how the
client makes calls to the two separate servers (Facebook site server and the app server), and
the way in which client-side scripting (in this illustration, JavaScript within the browser)
makes calls to Facebook server, are illustrated by Figure 2.1 from the Facebook Developers
site (Facebook Developers, 2011).

7

Figure 2.1: A diagram showing calls from the AmazingStoke player (“User”) to the
Facebook server and the AmazingStoke server (“Your server”). JS denotes JavaScript. Taken

from Facebook Developers (Facebook Developers, 2011).

2.4 Authentication Of Challenges By AmazingStoke
Players
It became necessary fairly early in the system design to make a decision regarding the
method by which a Player will authenticate that they have completed a challenge that they
have taken on.

In the original project proposal, I had suggested that NFPs would need to manually check any
tasks that a Player had stated that they had completed. This has the potential to be extremely
time-consuming for NFPs.

Therefore, I made the decision that Challenges would be authenticated by Voucher Codes,
which are six-digit integers between 100000 and 999999 which the NFP generates at the time
of adding the task, with the functionality to generate further Voucher Codes at a later point.

My chosen method is that NFPs will be able to generate either a single authentication codes
that can be used by multiple Players for the same Challenge (which would be useful when
Players are completing major Challenges for an NFP, such as completing a marathon or
becoming a media volunteer for an organisation), or multiple authentication codes which are
single-use (i.e., deleted from persistent data structure after use) which would be suitable for,
for example, mailing out to any supporter who gave a donation over a certain size, or anyone
who changed their Facebook profile picture to a charity’s logo.

8

Chapter 3: System Analysis and Design

3.1 System Requirements
From initial project proposal, it was clear that the AmazingStoke system will be used by two
main groups with separate (although related) goals. These groups are players and NFPs. From
this point onwards, these user groups will be referred to as Players and NFPs respectively.

Initial ideas also suggested that the system would comprise three main components – the
player game, the NFP administration website, and the underlying persistent data structures.
Outside of this core design decision, the use of various UML techniques assisted in the design
of the conceptual “to-be” system. This chapter explores the conceptual system via a series of
modelling techniques and incorporates design patterns to solve certain problems that arose in
the design process.

Given the nature of this project – a web-based project being developed in conjunction with a
highly changeable social networking interface – it seemed appropriate to use an agile and
iterative development process for system development. As noted in Chapter 1, various RAD
principles will be used.

Additionally, some (although not all) of the principles of Extreme Programming (XP) such as
continuous testing, simple coding of frequent “releases” to prototypes of parts of the system
to users quickly, were be adopted in the development of the AmazingStoke system (Larman,
2004). Given the fact that a specific user group had been identified and involved at an early
stage of the project, ongoing user testing would be both important and practical to carry out.
The modularity of the system, combined with the fact that programming for the web can offer
a broad range of solutions to design decisions, meant that a flexible and iterative approach
seemed likely to lead to the best possible end system.

9

3.1.1 High-Level Goals
The background research questionnaire and the initial project proposal explored many of the
key ideas of the requirements of the AmazingStoke proposed system, and included two use
cases defining steps taken by the two groups of users to achieve their goals using the system.
From these initial documents (questionnaire results, initial project proposal) lists of key user
goals were defined as below.

NFP User Tasks

1. Upload new Challenges to AmazingStoke system

2. Generate random (or pseudorandom) authentication Voucher Codes for distribution to
Players

3. Update organisational information

4. Send messages to Players

5. Obtain statistics relating to numbers of Players registering for and completing
Challenges

Player User Tasks

1. Create Game account via Facebook

2. Log in to Game via Facebook

3. Buy Buildings for in-game Map

4. Find out more about NFP users

5. Take on new Challenges

6. Use Voucher Codes to confirm completion of Challenges and receive
MarvelMoney rewards

7. Suggest Challenges for other Players with whom they are linked in-game
(potentially via the Facebook Social Graph tools)

8. Collect in-game earnings from Buildings placed on in-game Map

There are additional tasks which may be required within the system, such as the setting up of
organisations on the system, which may be referred to under a third heading of System
Administrator Tasks. The original project proposal included a discussion on the feasibility of
a full-time site moderator to ensure that the system was being not being abused by NFPs. It
was stated in the original specification that the nature of the proposed AmazingStoke system
would require a human moderator, both for the creation of new NFP user accounts and for the
approval of Challenges listed on the system. Therefore, the following tasks are those that

10

would be required to take place by an external moderator. I have decided that it would be
outside of the scope to build a separate interface for the moderation of the system at this stage
– at this stage, it should be assumed that the following System Administrator Tasks are to be
carried out via a direct access to the underlying persistent data structures.

I also decided that, although the system would include potential for Challenges to be
marked as “Live” or not “Live”, the system developed for this project would initially list all
Challenges as “Live.

System Administrator Tasks

1. Set up new NFP accounts for the AmazingStoke system

2. Check that Challenges listed conform to guidelines of what can and cannot be asked
of Players (i.e. not asking Players to commit potentially illegal acts such as
destruction of property)

3. Remove expired Challenges from the system

11

3.1.2 Requirements From Research Questionnaire
As part of the original research questionnaire, the twelve NFP organisations were asked to
rate fifteen different requirements of the proposed AmazingStoke system in terms of
importance.

NFPs gave each system requirement an importance out of five, with five being “most
important” and 1 being “least important”. NFPs were not constrained on how often they
could award each rating.

Although included in the original project proposal, the combined ratings of the importance of
different system aspect are reproduced in Table 1.

Requirement Importance

User-friendly design 4.33

Easy for users to find out more about organisation 4.33

Fun for users 4.17

Low cost to the organisation 4.08

Information security and data protection 4.08

Easy for users to sign up or cancel account 4.08

Large number of participating players 3.92

Easy for organisation to sign up or cancel account 3.91

Appropriate content, i.e. no material inappropriate for young people 3.83

Good technical support 3.58

Input into the development of the site, i.e. where it is marketed, what audiences are
targeted 3.33

Easy for charities to learn how to use 3.18

Low involvement of the organisation, i.e. not needing to check site regularly 3.00

Which other organisations are using the technology 3.00

Ability to control number of people contacting organisation 2.92

Table 3.1: Importance of different AmazingStoke system requirements out of 5.0, as rated by
twelve different NFP organisations in April 2011

12

From these results, it is possible to see that the most important requirements, as requested by
NFPs, are:

 User-friendly design

 Easy for users to find out more about organisation

 Fun for users

 Low cost to the organisation

 Information security and data protection

 Easy for users to sign up or cancel account

3.1.3 FURPS Requirements Specification
According to the Unified Process, system requirements should be categorised according to
the FURPS+ model (Larman, 2004). This divides system requirements into the categories of
Functionality, Usability, Reliability, Performance, Supportability, with “+” denoting the
additional optional requirement factors of Implementation, Interface, Operations, Packaging,
Legal.

Functional Requirements

The system must allow new Players to sign up to the Game via Facebook (as part of
requirements “Easy for users to sign up or cancel account”).

The system must allow Players to login to the Game using their Facebook login
information.

The system must write all changes confirmed by users (Players and NFPs) to underlying
persistent data structure such as a Database stored on the server computer.

The system must keep track of the passage of time and update both Game information and
NFP Site information accordingly.

The system must require users of either part of the system (Game and NFP Site) to login
securely (as part of requirements of “Information security and data protection”)

It must be easy for Players to find out more about organisations using the AmazingStoke
system.

13

Usability Requirements

Browser Support

Both parts of the system (Game and NFP Site) should work on the three most commonly
used web browsers – Internet Explorer, Firefox and Chrome (W3C, 2011)

Browsers used for accessing the Game must have enabled JavaScript to run within the
browser

Human Accessibility

Both parts of the system should take into account issues of web accessibility for users of
differing levels of ability (W3C, 2011)

Reliability Requirements

The system must makes writes to the persistent data structure with sufficient frequency that in
the event of a crash of browser, all data is not lost.

Performance

Both parts of the system (Game and NFP Site) must ensure an appropriate split of the
workload between client and server parts of the system, to ensure that the user experience is
as smooth as possible whilst making as few calls to the server as possible whilst maintaining
reliability. Fewer calls to the server mean greater speed for all users (as part of requirements
“User-friendly design” and “Fun for users”).

The system must ensure that both parts of the system – but in particular the Game – respond
swiftly to user interaction (as part of requirements “User-friendly design” and “Fun for
users”).

Supportability

Facebook Support

The Game should work properly within the Facebook site, and also take advantage of the
social networking features offered as part of the Facebook API and Social Graph (Facebook
Developers, 2011).

Browser Support

As mentioned under Usability, both parts of the system should work on at least Internet
Explorer, Firefox and Chrome.

14

Adaptability

Different users of the NFP Site will have different requirements in terms of the challenges
they would like to load onto the system and methods of authentication. The system should
therefore include sufficient flexibility to accommodate different types of tasks and
authentication methods.

+: Implementation

The system should incorporate both client-side and server-side scripting, and a permanent
underlying persistent data structure such as a relational Database.

The Game side of the system should be integrated into the main Facebook site, accessed as an
app using the Facebook iframe app support.

+: Interface

The system must one include one interface for NFPs (NFP Site) and one interface for
Players (Game).

The Game must be accessible via Facebook.

+: Legal

The system should include manual checking of all new Challenges loaded into the
system, to ensure that Players are not being asked to undertake unsafe or illegal activities.

15

3.1.4 Use Case Models
Having identified the key goals of the key, it becomes helpful at this stage to create set of use
cases, to better understand the processes and potential conceptual classes present within the
system. Two sets of Use Cases and accompanying Use Case Models, one for Players and one
for NFPs, can be developed from Section 3.1.1.

Figure 3.1: Use Case Model for Players

16

Figure 3.2: Use Case Model for NFPs

The set of major Use Cases can be found within Appendix A.

17

3.2 System Design
This section covers the development from the requirements of the system through to initial
design of the system. Further UML modelling techniques are used to clarify and record
system design considerations.

3.2.1 Identifying Conceptual Classes
Using the information gathered in the Section 3.1, it was possible to identify high-level
conceptual classes. These included:

 Player

 NFP

 Challenge

 Map

 Building

 Voucher Codes

 NFP Site

 Game

 Database

3.2.2 Domain Model
Using the high-level conceptual classes identified in Section 3.2.1 and the set of Use Cases in
Appendix A, it was possible to construct a high-level Domain Model showing relationships
between the conceptual classes. This is shown as Figure 3.3. This representation was used to
assist to design the structure of the underlying persistent data model (Section 3.5).

18

Figure 3.3: AmazingStoke System Domain Model

3.2.3 Model, View, Controller
It was useful to consider existing design patterns in relation to the proposed system
architecture. Design patterns present solutions to problems that occur repeatedly within
different forms of systems designs and development. A design pattern is a generalised set of
communicating objects and classes which can customised to solve a problem in a specific
system (Gamma, Helm, Johnson, & Vlissides, 1995).

The architectural pattern Model-View-Controller, first envisioned by the creators of the
Smalltalk language in the early 1970s (Dennis, Wixom, & Tegarden, 2010), is often applied
to aid understanding of web applications.

The key concept is the separation of the application logic of the system from the logic of the
user interface (input and presentation). The elements may be described as follows:

Models implement the application logic

Views implement the presentation of the underlying Models. Multiple views can represent a
single underlying Model object.

The Controller collects input from users, and implements the logic on the underlying model

Figure 3.4 presents a representation of the Model-View-Controller design pattern.

19

Figure 3.4 Model-View-Controller Design Pattern

The problem solved by this design pattern is that changes to the underlying Model can update
to any number of Views, without changed Views needing to have knowledge of one another.
The Model-View-Controller pattern decouples of the presentation of the information from the
information itself, a concept which was important to the development of the AmazingStoke
web-based system with multiple users accessing a single shared persistent data structure.

3.2.4 Identifying Different Views
In applying the Model-View-Controller pattern to the AmazingStoke proposed system, it is
clear to see that there are two main Views of the underlying data Model. There is the NFP
Site and the Game, both providing separate Views (and incorporating different Controller
mechanisms) of the underlying data Model.

It is also possible to see from the Use Cases that furthermore there are a number of different
Views of the underlying persistent data model within the Game part of the system, including:

 Map View

 Buy Buildings View

 NFP List View

 Challenges List View

Finally, it can also be seen that Players can also access three different variations of the
Challenges objects in the system. These three different variations of Views on
Challenge objects held in the Model are:

 Challenges List (All)

 Challenges List (Specific NFP)

 Challenges List (Player)

20

3.2.5 Identifying Core Functionality
In the development of a modular system, it was helpful for design purposes to identify the
key functionality which should be developed first, with the potential for further functionality
to be added in according to time available.

Identification of the key components of the propose AmazingStoke system was carried out in
the initial project proposal, and restated below.

 Database of Players and their Maps, NFPs, Building types and supporter
Challenges

 A view of the proposed system for Players as a Facebook app

 A stand-alone site for NFPs that allows the addition of new supporter Challenges to
the Database and validation of supporter Challenges completed by Players

 An ability for Players to link to each other as friends

 An in-game messaging system and Challenge-setting system

 A “leader board” as part of Facebook app for Players

 Potentially, pop-out browser-based games accessed by clicking on the buildings in a town
map – for example, clicking on a “School” building placed on a map could launch a word
puzzle game, or clicking on “Bank” building on a map could launch a maths puzzle game,
in new windows.

The most important modules are:

 the Database module

 the NFP Site accessing the Database

 the Player Facebook app accessing the Database.

Modules of lesser importance include:

 linking and messaging facilities

 leader board

 pop-out games

21

3.2.6 Graphics
As stated in the original proposal, given that the aim of this project was to develop software
design and development skills. As I am not an expert in graphic design, the graphics for this
project were fairly rudimentary as spending a large amount of time on design would have
taken time away from programming and development of functionality.

A set of five basic Building images was created using and were used to illustrate the
functionality of the system. However, the AmazingStoke system was designed in such a way
that more aesthetically pleasing visuals could be easily “added in” to the system by designers.
This issue will be further addressed in Chapter 6.

22

3.3 NFP Site Design
This section of the Analysis and Design relates to the creation of the detailed design model
for the NFP Site. To this end, a Use Case developed in Section 3.2 was analysed in
greater detail to determine necessary functionality and interactions.

The Domain Model created in Section 3.2.2 allowed the identification of the conceptual
classes which used by the NFP Site section of the proposed AmazingStoke system. These
are:

 NFP, NFP Site, Challenge, Voucher Codes

3.3.1 Use Of A Database
As discussed in earlier sections, a persistent underlying data structure was necessary to store
information between sessions. From this point onwards, it was assumed that this some form
of Database, with exact specifications fixed at a later point (see Section 3.5).

This design section also assumed that the NFP has a permanent record already stored within
the system by the time of logging in. As discussed in the initial project proposal and in earlier
sections, the addition of new NFPs to the system falls under the heading of System
Administration Tasks, i.e. managed by a site moderator and outside the scope of this
project.

3.3.2 Use Of Sessions In NFP Site

It was also decided at this point that the NFP Site should not only include password-
protected login, but should also keep NFPs logged in to the site between pages. There are
numerous ways of ensuring that login information is stored as users navigate pages within a
website, which are be explored in further detail in Section 3.4.1. However, it was assumed at
this stage of design that an appropriate method of storing user information between different
pages of the site (referred to from now on as a Session) would be built into the system.

3.3.3 Adding A Challenge
Many of the Use Cases identified in Section 3.1.4 involved simple CRUD (Create, Read,
Update, Delete) calls to the underlying Database. However, the adding of a new
Challenge to the Database (Use Case 13) required a more complex series of events. A
System Sequence Diagram (Figure 3.5) was been created to show the events required for an
NFP to log in to the NFP Site, navigate to the Load a Challenge Form, enter the details,
have details checked in-browser, and then written to the Database.

23

By drawing a System Sequence Diagram for this more complex Use Case, it was possible to
extrapolate similar sequences of events for other CRUD operations on the Database by an
NFP via the NFP Site.

Figure 3.5: System Sequence Diagram for Use Case 13:Add New Challenge

24

3.3.4 Design Class Diagram (NFP Site)
Figure 3.6 shows a Design Class Diagram of the classes identified and developed in Section
3.3.3. Necessary attributes and operations for classes begin to emerge as the model develops.
The attributes of the classes also began to suggest a structure for the underlying persistent
data model (see Section 3.5 for more on this).

Figure 3.6: Design Class Diagram for NFP Site

25

3.4 Game Design
This section of the Analysis and Design relates to the creation of the detailed design model
for the Game interface. As before, several of the Use Cases developed in Section 3.1.4 were
analysed in greater detail to determine necessary functionality and interactions, and the
Domain Model created in Section 3.2.2 allowed identification of the conceptual classes used
by the Game section of the AmazingStoke system.

Conceptual classes involved in the Game section are:

 Player, Game, Facebook Account, Map, MapSquare, Building

As stated in Section 3.3.1, it was assumed that some form of Database provided a
persistent underlying data structure accessed by the Game.

3.4.1 Use of Sessions In Game

It is also assumed that, as discussed in Section 3.3.2, the website hosting the Game interface
viewed via Facebook uses sessions technology to keep Players logged in as they navigate
to different parts of the Game.

Although this will be discussed in more detail later in the report, a key part of the
authentication will be that it is done using information from a Player’s Facebook account,
rather than requiring a separate username and password as necessitated by the NFP Site.

3.4.2 Logging In To Game
Figure 3.7 shows a System Sequence Diagram for Use Case 1: Login To Game. It is
assumed that the Player has a Facebook account. Although some successful Facebook
games do also offer alternative version of the game via stand-alone sites, such as the game
FarmVille (Zynga Games Inc., 2011), this would be beyond the scope of the current project.
As an area for further development, please see Chapter 6.

This System Sequence Diagram also shows the first decision about whether to host
information client-side or server-side. In this design diagram, a MapArray object is created
within the browser using server-side scripting, and the information regarding the
Buildings on MapSquares is stored within this array. In practical terms, this meant that
rather than reloading of the page when a change was required, the MapArray object could
be dynamically modified in-browser, creating a more seamless user experience and fewer
time-consuming calls to the remote server.

26

Figure 3.7: System Sequence Diagram for Use Case 1:Login To Game

27

3.4.3 Buying Buildings
Figure 3.8 shows a System Sequence Diagram for Use Case 3: Buy Building. In this
example, it was assumed that the Player had already successfully logged in to the Game as
described in Section 3.4.2.

This System Sequence Diagram incorporates a similar design decision to the one discussed in
Section 3.4.2 – namely, what functionality should be handled client-side and what should be
handled server-side.

To purchase a Building for an AmazingStoke town map, it was necessary to display a list
of the Buildings stored in the underlying data structure, along with a mechanism for the
Player to select one of these Buildings (such as submitting data via a form or by
clicking on a specific image). As discussed in the Use Cases, I had decided that this would
bring up a new View of the data – that is, the Map will not be visible whilst the Buildings
are displayed.

However, the two different types of scripting – client-side and server-side – presented
different possible solutions for this.

Server-side scripting would require a call from the client to the remote server to download a
complete new page, complete with call to the database, each time the Player instructed the
Game to switch to the Buying Buildings View. In this Use Case 3: Buy Building,
two calls to the server would be required once the initial page has loaded – one call to load
the Buying Buildings View, and one call to load the Map View once the Player
has completed this sequence of events.

Client-side scripting provided a different approach to this. By loading a greater amount of
information from the server in the initial loading of the page, then using client-side scripting
to dynamically rewrite the page within the browser, it would appear to the Player that
different pages are being displayed when in fact no further calls to the server were being
made. Generally speaking, networking operations are the most time-consuming operations of
a system (Yahoo! Inc., 2011). Therefore, reducing the calls to the server from two to zero
would speed up the Player experience and reduce workload on the server. It was hoped that
this would work towards two of the three most important NFP user requirements (see Section
3.1.2) of “User-friendly design” (rated 4.33 out of 5.0) and “Fun for users” (rated 4.17 out of
5.0).

There are different methods by which the View could be changed through the user of client-
side scripting are further discussed in Chapter 4. At this point, however, it is assumed that
the Game switches between the Map View and Buying Building Views using client-
side scripting.

28

Figure 3.8: System Sequence Diagram for Use Case 3:Buy A Building

The use of server-side scripting to switch between the Map View and the Buying Building
View would mean that whilst it was possible to make the changes to the MapArray object in
the browser, this would not result in the change being written to the Database. For this, the
inclusion of additional Ajax technology would be necessary (see Section 4.3.2).

29

3.4.4 Authenticating A Challenge
Figure 3.9 shows a System Sequence Diagram for Use Case 7: Authenticate Challenge. In
this example, it was assumed that:

 The Player had already successfully logged in to the Game as described in Section
3.4.2

 The Player had previously successfully completed Use Case 5: Choose New
Challenge

 The Player had received a Voucher Code from the NFP that added the Challenge
to the AmazingStoke system

It was assumed that the Challenge List View shown in the System Sequence Diagram
included an HTML form which allowed a Player to enter the Voucher Code as a string.

This Use Case required further design decisions related to what functionality would be
handled client-side and what should be handled server-side.

As in Use Case 3: Buy Building, it would be theoretically possible to load the information
relating to all tasks and their authentication codes into the browser, and then use an Ajax call
to the server if the correct information is entered.

However, this has security issues as all possible voucher codes would need to be loaded as
information into the browser on the client-side. This would be in contravention of the high-
importance user requirement “Information security and data protection” (rated 4.08 out of 5.0
importance in research questionnaire, see Section 3.1.2). Therefore, in this case, it is
necessary to send the Voucher Code to the remote server for checking against the
Database, rather than attempting to authenticate using information stored client-side.

This would require an increased number of calls to the server. However, to minimise calls to
the server, the workload could be split as follows:

 Information about Challenges undertaken loaded into data structures on client-side, to
allow swift and fluid viewing of Player information with the Game

 Once a Voucher Code is entered and submitted via a form from the Challenge
List View would a call be made to the Database on the remote server to verify the
Voucher Code

In this way, the maximum amount of processing of information would take place on the
client-side, to reduce calls to the remote server and thus speed up the user experience.
However, for security reasons, in this case a call to the remote server was considered
essential.

30

Figure 3.9: System Sequence Diagram for Use Case 7:Authenticate Challenge

3.4.5 Viewing Charity Information & Viewing Tasks
Two other key Use Cases identified for Players in Section 3.1.4 were Use Case 5: Choose
New Challenge and Use Case 9: Find Out More NFPs.

Both of these Use Cases deliver key functionality to the Game. However, from the detailed
assessment of Use Case 3: Buy Building and Use Case 7: Authenticate Challenge, it was
possible to see that Use Case 5: Choose New Challenge and Use Case 9: Find Out More
NFPs both follow similar steps to those already explored in more details.

That is, when the Game is loaded via the Facebook Site, a call is made to the
Database to retrieve the initial information about NFPs and their Challenges. This
information is then held in data structures or objects within the browser on the client side.

31

Alternatively, this information could be retrieved from the Database each time the
Player switches to this View (Challenge List, NFP List) as a separate page
called from the server. This greater use of server calls potentially makes the gaming
experience slower and thus less enjoyable for Players of the Game.

A proposed breakdown of information and functionality managed the browser evolved as
follows:

Client-Side

Loaded into the browser at the time of the initial call with client-side scripting to switch
between views of this information:

 Switching between different views of information, i.e. a single page within the side using
client-side scripting to show or hide different sections of the page

 Map information (with behind-the-scenes calls to the server when new Buildings are
bought)

 Building information

 NFPs information (i.e. NFP Users of the AmazingStoke system)

 Challenges, both that a Player has accepted and Challenges listed by NFPs
(with behind-the-scenes calls to the server when new Challenges are taken on)

Server-Side

 Server call when Game is first loaded via the Facebook Site

 Ajax calls to the server when a new Building is purchased

 Ajax calls to the server when a new Challenge is accepted

 Call to the server using HTML form when a Challenge is authenticated using a Voucher
Code

32

3.4.6 Design Class Diagram (Game)
Figure 3.10 shows a Design Class Diagram of the classes identified and developed in
Section 3.4.

As with the Design Class Diagram in Section 3.3.4, necessary attributes and operations for
classes began to emerge as the model developed. The attributes of the classes also began to
suggest a structure for the underlying persistent data model (see Section 3.5 for more on
this).

Figure 3.10: Design Class Diagram for Game

33

3.5 Database Design
As discussed previously, it was necessary to store the underlying data in a persistent format. I
decided to use a relational database, and this section discusses the relations created for the
system.

The previous design activities had identified the information that would need to be held by
the system on various conceptual classes. The data fields needed for a Player included the
following:

 Facebook ID, MarvelMoney Balance, Date Last Played,
Challenge IDs (multiple repeated data), Map Square Contents 1-64

The data fields needed for an NFP included the following:

 Charity Number, Charity Name, Contact First Name, Contact
Surname, Phone Number, Email Address, Password, Address Line
1, Address Line 2, Address Line 3, Town / City, County,
Postcode, Charity Description, Charity Website

The data fields needed for a Building included the following:

 Name, MarvelMoney Cost, Image Name, MarvelMoney Earnings

The data fields needed for the Challenges included the following:

 Challenge ID, Charity Number, Date Listed, Date Expires,
Title, Category, Description, Proof, MarvelMoney Reward,
Voucher Codes (multiple repeated data), Live (Boolean value)

At this point, it became necessary to make a design decision about whether a Challenge
that uses only one multiple-use Voucher Code would use a Database field for a
separate Voucher Code, would use a separate relation to hold the single Voucher Code,
or whether some other system would be used.

I decided that, in the main Challenge record, one field would hold a Boolean value,
recording TRUE for Challenges which use multiple Voucher Codes, and FALSE for
Challenges authenticated by a single Voucher Code.

In the situation where a Challenge could be authenticated by a single Voucher Code, it
made greater sense in terms of space efficiency to re-use an existing piece of data held about
the Challenge. In this case, I made the design decision that where multiple Voucher
Codes were not used, the Challenge ID would be used for authentication, and a
secondary relation of voucher codes would not be created for these Challenges.

34

Relational databases may be optimised for space efficiency via a process known as
normalisation (Ramakrishna & Gehrke, 2003). Once the data had been converted to 3rd
Normal Form (3NF), the database relations were as follows:

Players

Facebook ID

MarvelMoney Balance

Date Last Played

MapSquare1

…

MapSquare64

PlayerChallenges (one per Player)

Facebook ID

Challenge IDs 0..*

Challenges

Challenge ID

Charity Number

Date Listed

Date Expires

Title

Category

Description

Proof

MarvelMoney Reward

MultipleVoucherCodes

Live

35

NFPs

CharityNumber

CharityName

ContactFirstName

ContactSurname

Phone

Email

Password

Address1

Address2

Address3

TownCity

County

PostCode

Charity Description

Website

Buildings

Name

MarvelMoney Cost

Image Name

MarvelMoney Earnings

VoucherCodes (one per Challenge, certain Challenges only)

Challenge ID

VoucherCode1

…

VoucherCode*

36

Chapter 4: Implementation
This chapter covers the iterative process of implementing the design ideas of Chapter 3 to
create the AmazingStoke system. The three main components of this system, each of which
underwent an iterative development cycle, were:

 Database of NFP, Player and system data

 Web interface for NFPs to manage their AmazingStoke accounts (referred to from this
point on as NFP Site)

 Web-based game for players accessed as an app via Facebook (referred to from this point
on as Game)

As explained in the Chapter 3, an agile and iterative methodology was employed in the
development of the AmazingStoke system, meaning that this chapter will discuss how various
simple sections of code were written and tested, building up to greater complexity with user
testing on a live site taking place throughout the process.

37

4.1 Technologies
As discussed in the initial project proposal, three key types of technology were employed in
the creation of the initial version of the AmazingStoke interactive web-based system. The
three key technologies required were:

 Persistent data storage mechanism, in this case a Database

 Server-side scripting language

 Client-side scripting language

The specific technologies chosen for each of these categories are described briefly below.

4.1.1 Database: SQL / MySQL Database
For persistent data storage, I chose to use a relational database management system
(RDBMS). Having studied them extensively throughout the course, this seemed the logical
choice for data storage.

The MySQL RDBMS is an open-source database used by major web-based products such as
Facebook, Google and Adobe (MySQL, 2011). It is one of the key components of the LAMP
(Linux, Apache, MySQL, PHP / Python / Perl) and WAMP (Windows, Apache, MySQL,
PHP / Python / Perl) development stacks, which were technologies I was keen to explore in
this project.

It is a widely-used technology for websites of which I already had a sound understanding, and
it seemed an obvious choice for the development of the AmazingStoke system.

4.1.2 PHP
Server-side scripting refers code run on a web server when a user requests a page, which
results in dynamically-generated web pages. There are a variety of programming languages
which can be used for this, including but not limited to Ruby on Rails (Heinemeier Hansson ,
2003), Java via JavaServerPages (JSP) technology (Sun Developer Network (SDN), Oracle,
2010), Active Server Pages (ASP) (Microsoft, 2011) and more.

I chose early on in the process to use PHP (PHP Hypertext Preprocesser). PHP is a web-
scripting server side language, which runs on multiple (Argerich, et al., 2002). It is an open
source language with broad functionality for databases, strings, Java, XML and other web
technologies (Argerich, et al., 2002). As someone with prior programming experience of
C++, the syntax of PHP seemed relatively simple to learn.

PHP programs use the file extension .php, and PHP instructions are enclosed in delimiters so
that browsers will run the PHP scripts. PHP instructions are enclosed within:

1. <?php

38

2. …
3. ?>

The echo command in PHP can be used to output text from the PHP program within
delimiters to the browser. For example, the following code segment:

4. <?php
5. echo “Hello World!”
6. ?>

will write the text “Hello World!” in the browser window. PHP also utilises the <<< operator,
known as heredoc for output to browser of string literals preserving line breaks and
whitespace. For example:

1. <?php
2. echo <<<_END
3. This is the start of the heredoc output.
4. Hello World!
5. This is the end of the heredoc output.
6. _END;
7. ?>

Note that _END is a tag chosen by the developer. Convention is to use an underscore
preceding the heredoc section name, but this is not essential.

Different developers use different conventions for the embedding of HTML and PHP within
web pages. Some developers prefer to use a minimum of PHP within a file, dropping in and
out as required, whilst others prefer to simply open and close the <?php…?> tag once. For
example, both of the following are valid:

1. <?php
2. $username = “Joanna Pinto”;
3. echo “Hello $username!”
4. ?>

1. Hello <?php $username = “Joanna Pinto”;?>
2. $username!

In this project, I chosen mostly to use the opening and closing <?php…?> tag once, as this
seemed simpler to me as a novice PHP user.

Variables in PHP are identified using the $ (dollar) sign, and must always include this at the
beginning of any reference to the variable. PHP is a loosely typed language, and variables do

39

not need be declared before use. PHP supports both functions and object-oriented
programming.

PHP has a library of functions relating to the MySQL database system. An initial call to
connect to a database from a PHP program is made using:

1. mysql_connect(servername, username, password);

A PHP string can then be passed as an SQL query to the currently active database using the
following function:

1. mysql_query(querystring);

If a return variable is required, such as a set of rows resulting from a SELECT query, an SQL
resource is returned to the browser. This can then be manipulated using further functions
from the PHP MySQL library. For example:

1. $queryString = “SELECT * FROM cats”;
2. $returnedTable = mysql_query($queryString);

Information can then be extracted using functions such as:

1. $numberOfRows = mysql_num_rows($returnedTable);
2. for ($i = 0; $i < $numberOfRows; ++ $i)
3. { $currentRow = mysql_fetch_row($returnedTable);
4. echo “$currentRow[0]
”;
5. }

PHP was a new language to me at the start of this project, and therefore it was necessary to
allocate time to learn to use this language. A book that was highly useful in the learning of
PHP and MySQL (as well as JavaScript) was Learning PHP, MySQL and JavaScript (Nixon,
2009).

4.1.3 JavaScript
JavaScript is an object-oriented client-side scripting language, first seen in Netscape
Navigator browser in 1995 (Nixon, 2009). It is an implementation of the ECMAScript
language standard. Despite its name, it is not related to the Java language. It allows for
changes to be made to a browser document without a call to the server to reload the page. It
runs within the HTML of a web page within <script> and </script> tags.

At the heart of JavaScript is the Document Object Model, or JavaScript DOM. The DOM was
covered during the teaching of the MSc course, and as stated in Section 1.3, it is assumed that
the reader has an understanding of this technology (Jacobs, 2006). It should be stated at this
point, however, that there are several difficulties which frequently arise in the use of
JavaScript.

40

One of these is the problems that the JavaScript DOM is implemented differently in Internet
Explorer from other browsers such as Firefox or Chrome. When there are specific issues
related to this in the development of the AmazingStoke system, this will be explicitly
described in this report.

A second problem is that not all users chose to allow JavaScript to run on their computers.
There are different approaches to dealing with this potential situation, and programmers may
choose to include alternative methods of generating results when JavaScript is not allowed.
Given the nature of the Game, it seems impractical to develop an alternate version for those
users who have disabled their JavaScript, as JavaScript will be used to implement core
functionality. However, a potentially useful consider would be a JavaScript-free version the
NFP Site, where JavaScript is intended that JavaScript creates a more seamless user
experience but is not essential to the site.

4.1.4 WAMP Development Stack
As outlined in Section 4.1.1, the selection of PHP and MySQL as development tools for the
AmazingStoke system allowed for the use of a WAMP (Windows, Apache, MySQL, PHP /
Python / Perl) development stack. The use of a solution stack was discussed in the initial
project proposal, however in summary a WAMP package binds the named programs together
as a development environment on one machine so that they do not need to be set up
separately (Nixon, 2009). Use of a WAMP package can significantly simplify and speed up
the building of a system that uses a range of different components.

I chose to use the EasyPHP (EasyPHP, 2011), a free-to-download WAMP utilising PHP 5
and incorporating the database manager phpMyAdmin and the debugger Xdebug.
phpMyAdmin allows browser-based manipulation of SQL databases, and significantly
simplifies the creation of the system’s relational Database.

4.1.5 Facebook API
As the Game section of the AmazingStoke will be hosted within the Facebook site, it is
relevant to include a discussion of the Facebook API.

The Facebook Developers Group is a site hosted within Facebook that gives extensive
instructions on creating a web-based application to be hosted within Facebook (Facebook
Developers, 2011). As explained in the initial project proposal, Facebook apps are loaded into
a Canvas Page. The app developer provides a Canvas URL that contains the web-based
application hosted on an external site. When a Facebook, user requests the Canvas Page,
Facebook loads the Canvas URL within an iframe, resulting in the app being displayed
within the Facebook chrome. Once a user has authorised an app, a bookmark (small redirect
icon) to it is added to that user’s Facebook homepage.

41

The Facebook Developers site lists the three main concepts of using Facebook as an
integrated host for an app are the authentication via Facebook, the Graph API, and the Social
Channels (Facebook Developers, 2011).

Authentication uses the OAuth 2.0 protocol to authenticate users accessing the app, and to
authorise the app. When a Facebook user authorises an app, the default settings means that
app can access basic information that is available publicly such as the user’s name and the
Facebook ID number (either a 9-digit or 15-digit unique numerical identifier). Figure 4.1,
taken from Facebook Developers, shows the flow of information when a server-side call is
made to access or authorise the app.

Figure 4.1: The flow of data in authentication of a Facebook user for an app when a server
call is made (Facebook Developers, 2011)

The Graph API refers to what Facebook terms its “social graph”. Facebook Developers
states: “The Graph API presents a simple, consistent view of the Facebook social graph,
uniformly representing objects in the graph (e.g., people, photos, events, and pages) and the
connections between them (e.g., friend relationships, shared content, and photo tags)”
(Facebook Developers, 2011). Every object in this “social graph” has a unique identification
number. By using the Graph API to access the other objects within the Facebook site linked
to the user, it is possible to create a Game with complex social networking functionality
enabled by existing Facebook technology. For example, it should be possible to utilise the
Graph API to connect Players to other Players who are already linked as “Friends” on
Facebook, without needing to develop a new system for this. Significant parts of the
AmazingStoke proposed system could be implemented using standard Facebook functionality.

42

Finally, the Social Channels allow Facebook users to share information regarding their app
usage with other Facebook users. These include:

 publishing information about a user via the News Feed (the page that a user sees when
they initially log in to Facebook) using the Feed Dialog (which suggests text the users
may wish to publish on their Walls as news stories) and the Like button (which allows a
user to click a single button to share information from an app on their Wall)

 using Requests, which can enable users to notify their Facebook friends to take a specific
actions within an app

 the Automatic Channels, which Facebook generates regarding app usage including
Bookmarks, Notifications, Usage Stories and App Profiles & Search.

The details of precisely how to make an app accessible via Facebook will be covered in
Section 4.2.3. The Facebook Developers site gives useful code examples for this in PHP,
which are used and accredited accordingly.

It is worthy of mention that an issue that arose with this project was that Facebook changed
the way that apps were hosted within the site during the course of this MSc. Prior to March
2011, interactions between the Facebook site and apps had been handled using the Facebook
Markup Language (FBML). After March 2011, however, new apps could not use FBML and
instead were loaded into Facebook using iframe technology and the Facebook API.
Unfortunately, this meant that by the time of implementation of the AmazingStoke proposed
system, many of the resources available regarding the creation of Facebook apps (such as the
book How To Do Everything: Facebook Applications (Feiler, 2008)) and information on
various Facebook app development forums (including some of the advice on the Facebook
Developers site itself) was obsolete.

Whilst this did not make the project impossible, having limited resources to draw on in
learning how to develop a Facebook app did make this project more complicated than
originally envisioned. It was an important learning point that there can be significant risks as
well as benefits in designing a web-based application integrated into a larger external system.

4.1.6 Hosting
As noted in Section 4.1.2, I intended to use EasyPHP for the development of the
AmazingStoke system. However, it became apparent very early on that whilst this was
feasible for the NFP Site and the Database could be developed and tested on the local
development server, the Game needed to be hosted on a live site in order to test the
integration and functionality within Facebook.

I therefore decided to purchase web hosting from the company One.com, which offered web
hosting including PHP 5 support and an integrated MySQL database accessed via the same
phpMyAdmin interface as my chosen WAMP (One.com, 2011).

43

My approach in this project was therefore to use the WAMP as a development and testing
environment for the Database and NFP Site, together with some aspects of the Game,
before migrating these to the live site hosted by One.com, with the URL
www.astoke.co.uk

44

4.2 First Iteration Of The System
This section of the report concerns the development of the first iteration of the AmazingStoke
proposed system. Various “proof-of-concept” systems were developed using simple methods,
to test ideas and to learn various features of the PHP and JavaScript languages, as well as to
explore the Facebook API.

4.2.1 First Iteration Of The MySQL Database

The design of the Database was described in detail in Section 3.5. The creation of the
necessary relations utilising phpMyAdmin saved significant time over using manual SQL
CREATE statements to define the necessary relations.

It should be noted that the TIINYINT data type is used to record a Boolean value (0 for
FALSE, 1 for TRUE).

In the first iteration, the relations were created as follows:

Users1

playerID varchar(32), sq1 varchar(32), sq2 varchar(32), sq3
varchar(32), sq4 varchar(32), sq5 varchar(32), sq6
varchar(32), sq7 varchar(32), sq8 varchar(32), sq9
varchar(32), sq10 varchar(32), sq11 varchar(32), sq12
varchar(32), sq13 varchar(32), sq14 varchar(32), sq15
varchar(32), sq16 varchar(32), sq17 varchar(32), sq18
varchar(32), sq19 varchar(32), sq20 varchar(32), sq21
varchar(32), sq22 varchar(32), sq23 varchar(32), sq24
varchar(32), sq25 varchar(32), sq26 varchar(32), sq27
varchar(32), sq28 varchar(32), sq29 varchar(32), sq30
varchar(32), sq31 varchar(32), sq32 varchar(32), sq33
varchar(32), sq34 varchar(32), sq35 varchar(32), sq36
varchar(32), sq37 varchar(32), sq38 varchar(32), sq39
varchar(32), sq40 varchar(32), sq41 varchar(32), sq42
varchar(32), sq43 varchar(32), sq44 varchar(32), sq45
varchar(32), sq46 varchar(32), sq47 varchar(32), sq48
varchar(32), sq49 varchar(32), sq50 varchar(32), sq51
varchar(32), sq52 varchar(32), sq53 varchar(32), sq54
varchar(32), sq55 varchar(32), sq56 varchar(32), sq57
varchar(32), sq58 varchar(32), sq59 varchar(32), sq60
varchar(32), sq61 varchar(32), sq62 varchar(32), sq63
varchar(32), sq64 varchar(32), money int(13), lastPlayed
int(8)

45

AsCharities

CharityNumber int(6), CharityName varchar(128),
ContactFirstName varchar(45), ContactSurname varchar(45),
Phone varchar(32), Email varchar(128), Password varchar(16),
Address1 varchar(4096), Address2 varchar(4096), Address3
varchar(4096), TownCity varchar(64), County varchar(64),
PostCode varchar(12), Blurb varchar(500), Image tinyint(1),
Website varchar(512)

AsCharityTasks

TaskID int(8), CharityNumber int(8), DateListed int(8),
DateExpires int(8), Title varchar(32), Category varchar(32),
DescriptionBlurb varchar(4096), ProofBlurb varchar(4096),
MarvelMoney int(9), VoucherCodes tinyint(4), Live tinyint(1)

Buildings

Name varchar(32), Cost int(7), Image varchar(256), Earnings
varchar(128)

Relations for the individual Player Challenges and Challenge Voucher Codes
were be generated dynamically as Players register for the game, and as NFPs add
Challenges via the NFP Site. These manual creations will be explored in greater detail
in the later sections.

An example of a Player Challenges relation, for a Player with playerID of
762451966, would be:

PlayerTasks762451966

TaskID varchar(255), Completed tinyint(1)

An example of Charity Voucher Codes relation, for a Challenge with a
ChallengeID of 123472, would be

Task123472

Voucher varchar(255)

46

4.2.2 First Iteration Of NFP Site
This section covers the development of the NFP Site where NFPs could add
Challenges, view existing Challenges, view Voucher Codes for existing
Challenges, and change their organisational information.

Throughout the development of this section, examples of developing a social networking site
are drawn significantly from Learning PHP, MySQL and JavaScript (Nixon, 2009). Any
code adapted from that source text is clearly marked as such in both the code and this report.

4.2.2.1 Key Functionality
As described above, the key tasks an NFP would carry out via the NFP Site are:

 Add a Challenge

 View existing Challenges

 View Voucher Codes available for existing Challenges

 Change their organisational information.

I decided at this stage that the ability to generate additional Voucher Codes relating to an
existing Challenge would be added in at a later iteration of the AmazingStoke system.

On arriving at the NFP Site, the NFP sees an information page, and a link to login to the
site (index.php). On clicking the link, they are taken to an HTML form asking for an
email address and password (aslogin.php).

On entering correct details, they are taken to a homepage (ashome.php) showing their live
Challenges with links to view the Voucher Codes if multiple Voucher Codes have
been generated. Additionally there are links to the forms to Add a Challenge, Update
Organisational Information, and Logout. A site overview could be sketched as Figure 4.2.
Rectangles with square corners represent statically generated pages, and rectangles with
rounded corners represent pages generated dynamically based on the NFP’s data.

47

Figure 4.2: Site Overview, NFP Site

As discussed in Section 3.3.2, one of the features of the NFP Site would be that NFPs log
in to the site using a username and password, then stayed logged in throughout their time on
the site. Theoretically, it would be possible to pass information about the currently logged in
NFP using GET and POST methods via the server, but PHP provides a more efficient
solution.

To store information about users as they access different pages, PHP contains the ability to
create sessions, which are collections of variables stored on the server about the current user.
A cookie is saved in the client’s web browser to identify the NFP’s server-side saved
information. If a user has cookies turned off, PHP will identify this and place the identifying
information in the GET portion of URL requests instead (Nixon, 2009).

Session information is stored as a PHP superglobal variable, as an associative array. This
array is always named $_SESSION, and values are set and retrieved using [] notation, for
example:

1. $_SESSION[‘username’] = “Joanna Pinto”;

To access information in session, the PHP function session_start must be called before
any HTML is output. The existence of specific keys within the $_SESSION array can be
checked using the isset function. For example:

48

1. session_start();
2. $_SESSION[‘username’] = “Joanna Pinto”;
3. if(isset($_SESSION[‘username’]))
4. echo “Hello $_SESSION[‘username’]!”;
5. else echo “Oh dear, no username has been set.”;

Variables within a session usually persist whilst the browser remains open. However, PHP
contains the session_destroy function which, combined with the deletion of
automatically stored information such as a timestamp and a user identifier, means that a user
can “log out” of a site without having to close their browser (see Section 4.2.2.7).

4.2.2.2 NFP Login Page With PHP And MySQL
To allow NFPs to log in to the NFP Site, a simple HTML form using the POST method
was created, asking for the registered user’s email address and password. The PHP program
(aslogin.php) was written so that once the form was submitted by the user, the login
information provided was passed back to the same program within the $_POST superglobal
array.

In this program, simple error checking is performed using the PHP isset function to ensure
that both a username and password have been entered – if not, the login page is reloaded with
an error message informing the user of this.

Once a username and password have been entered, the information is checked against
registered NFPs using a call to the Database. For the sake of efficiency, a simple PHP
program to establish a connection to the Database was written and entitled db_login.php.
Also included in this program is a PHP function queryMysql, which takes in a string,
checks it against the Database, and returns the MySQL error message if there is an error in
the SQL. This function is adapted from Nixon, 2009.

1. function queryMysql($query)
2. { $result = mysql_query($query) or
3. die(mysql_error());
4. return $result;
5. }

This login file was included in each page of the site using the following PHP code at the start
of each program:

1. <?php
2. include ‘db_login.php’;
3. ...

Once an NFP has submitted their email address and password, a query string is passed to the
Database. If the email address and password match information held in the Database, the

49

information is set to the $_SESSION array and the user redirected to the View Current
Challenges (ashome.php) page as follows:

1. $query = "SELECT CharityNumber, Email, Password FROM
2. Ascharities WHERE Email='$user' AND
3. Password='$pass'";
4.
5. $query_result = queryMysql($query);
6. if (mysql_num_rows($query_result) == 0)
7. { $error = "Email / Password invalid
";
8. }
9.
10. else
11. { $row = mysql_fetch_row($query_result);
12. $charityID = $row[0];
13.
14. $_SESSION['user'] = $mailing;
15. $_SESSION['pass'] = $pass;
16. $_SESSION['charityID'] = $charityID;
17.
18. header('Location:
19. http://astoke.co.uk/charities/ashome.php');
20. }

4.2.2.3 View Challenges Page
Upon entering valid login information, NFPs are directed to a welcome page giving further
information about the NFP Site, showing details of the current logged in NFP and listing
their current live Challenges. Links are also provided to the Add A Challenge, Update
Information and Logout pages. This PHP program is saved as ashome.php and, as before, the
file db_login.php is included.

If the $_SESSION information has not been set, for example if a user has entered the URL
of ashome.php directly into their browser without first logging in, this page simply displays
an error message.

Otherwise, a call to the Database retrieves the relevant information for the specific charity.
Information regarding Challenges which have been loaded to the system is displayed in
HTML table format.

The table also contains form buttons for Challenges with multiple Voucher Codes.
For each Challenge with VoucherCodes set to 1 (TRUE), a form is created within the table
to pass the ChallengeID to the View Vouchers page (see Section 4.2.2.6). The following code
demonstrates this:

50

1. $vouchers = $currentRow[9];

2. if ($vouchers=='1')
3. { $vouchers = 'Yes';
4. $viewVouchers = "<form action='viewvouchers.php'
5. method='post'><input type='hidden' name='taskID'
6. value='$taskID' /><input type='hidden'
7. name='title' value='$title' /><input type='submit'
8. value='View voucher codes' /></form>";
9. }
10.
11. else
12. { $vouchers = 'No';
13. $viewVouchers = "n/a";
14. }
15.
16. echo
17. "<tr>
18. <td>$title<td />
19. <td>$description<td />
20. <td>$marvelMoney<td />
21. <td>$vouchers<td />
22. <td>$viewVouchers<td />
23. </tr>";

4.2.2.4 Add Challenge Form
In the first iteration of the NFP Site, the Add Challenge Form was a simple PHP program
incorporating an HTML form, with all areas of the form visible and error checking handled
by PHP and error message PHP variables.

As discussed in the original project proposal, specific Challenges that an NFP could load
would be worth specific amounts of MarvelMoney (in-game reward for Players).
Therefore, within this Add Challenge page, the MarvelMoney value for the Challenge
would be ascertained from the Category selected, and written to the Database by the
system without the NFP selecting this. The exception to this would be if a Challenge was
a Fundraising Challenge, in which case the NFP enters an amount via the form, and the
MarvelMoney reward is set at the rate of 4 MarvelMoney per £1 raised.

The new Challenge is then inserted to the Database relation AsCharityTasks using
the queryMysql function described in Section 4.2.2.2.

The creation of a relation of multiple Voucher Codes is achieved by first issuing a
CREATE statement to the Database. However, as Challenges are assigned
ChallengeIDs in ascending numerical order, a call must then be issued to the Database to
find the ChallengeID of the Challenge just added:

51

1. $taskIDQuery = "SELECT TaskID FROM ascharitytasks
2. WHERE Title='$title' AND CharityNumber='$charityID'
3. AND DateListed='$datelisted'";

Once the ChallengeID has been ascertained using the result object returned from the above
query string, a relation of Voucher Codes can be created as follows:

1. $tableName = "Task" . $taskID;
2. $voucherQuery = "CREATE TABLE $tableName (Voucher
3. VARCHAR(255))";
4. queryMysql($voucherQuery);

The Voucher Codes relation must then be populated with codes. I decided to create 6-
digit verification codes, and to start each sequence from a pseudorandom number between
100,000 and 899,999.

The maximum number of initial Voucher Codes generated per Challenge is capped at
1,000. This was capped so as to ensure that NFPs did not use up large amounts of
Database space by listing excessive number of Voucher Codes, most of which would
be unused. However, by using an initial starting point starts guarantees at least 100,000
Voucher Codes can be generated, NFPs can generate a large number of additional
Voucher Codes (as described later) whilst ensuring that no Voucher Code will be
greater than maximum decimal 6-digit integer (999999).

Using a pseudorandom number to begin the sequence, rather than starting simply at 100000,
minimises the ease of obvious potential “cheating” by Players by brute-force entry of
Voucher Codes starting at 100000 for each Challenge.

A pseudorandom number between 100,000 and 899,999 is generated by the following PHP
code:

1. $voucherStart = rand(100000, 899999);

The Voucher Codes relation is then populated by means of a simple for loop:

1. $voucherEnd = $voucherStart + $vouchers;
2.
3. for ($i = $voucherStart; $i < $voucherEnd; ++$i)
4. { $insertQuery = "INSERT INTO $tableName VALUES
5. ($i)";
6. queryMysql($insertQuery);
7. }

52

Finally, on successful insertion of the new challenge into the Database, and optionally the
creation of a new Voucher Codes relation in the Database, the NFP is redirected to a
confirmation page asthanksphp.

1. if($approval) header('Location:
2. http://astoke.co.uk/charities/asthanks.php');

4.2.2.5 Update Details Form
The Update Details page provides a simple HTML form to perform an update on the
Database. The PHP program for this was created as aseditinfo.php.

The code for this will not be described in detail as it required only a simple HTML form
using an HTTP POST request to the same PHP program and a call to the Database. The
code ensures that if a blank field is submitted in the form, no information is written for that
field to the Database. As with previous pages, the login details for the Database are
included at the beginning of the PHP program using:

1. <?php
2. include ‘db_login.php’;
3. …

On successful updating of the Database, the NFP is redirected to the confirmation page
asthanksphp.

4.2.2.6 View Voucher Codes
The program to display onscreen the available Voucher Codes for a specific
Challenge, as accessed from the View Challenges page (ashome.php) was created as
viewvouchers.php.

As described in Section 4.2.2.3, the ChallengeID is passed to this program by means of the
HTTP POST, and accessed by the viewvouchers.php program using the PHP
superglobal array $_POST.

Voucher Codes are then retrieved from the Database and displayed as an on-screen list
using a single call to retrieve the data from the Database, then a for loop to display the
returned Voucher Codes onscreen.

The code for this will not be described in detail. As with previous pages, the login file
db_login.php is included in the viewvoucher.php program.

4.2.2.7 Logout
The final PHP program required as part of the first iteration of the NFP Site is a simple
program to log the NFP out by destroying the information set for the current session.

Adapted from Nixon, 2009, the aslogout.php is as follows:

53

1. <?php
2.
3. include 'db_login.php';
4. session_start();
5.
6. function destroySession()
7. { $_SESSION = array();
8. if (session_id() != "" ||
9. isset($_COOKIE[session_name()]))
10. setcookie(session_name(), '', time()-2592000,
11. '/');
12. session_destroy();
13. }
14.
15. if(isset($_SESSION['user']))
16. { destroySession();
17. echo
18. "...
19. Thank you. You are now logged out of the site.
20. ...”;
21. }
22. ?>

54

4.2.3 First Iteration of Game
This section covers the development of the Game where Players can add view their
AmazingStoke town Map, new on new Challenges, authenticate completed Challenges
and find out more about NFPs. All of this takes place within the social networking site
Facebook, and uses that site’s authentication system to log Players in to the Game.

In this first iteration of the Game, the integration into Facebook and overall game-related
concepts were explored by creating a series of PHP programs which did not, at this stage,
include the use of JavaScript and Ajax described in Chapter 3. This iterative first approach
meant that concepts and code for the system could be explored whilst at the same time
continuing the learning and research associated with learning JavaScript (which, although
covered briefly in the teaching of this MSc, required further learning on my part to create the
desired functionality).

Throughout the development of this section, code from the Facebook Developers site was
used to integrate the externally-hosted game into the Facebook as an app. Any code adapted
from that online resource is clearly marked as such in both the code and this report.

4.2.3.1 Key Functionality
As described above, the key tasks a Player carries out in the Game are:

 View their AmazingStoke Map

 Buy a Building

 Take on new Challenges

 Authenticate Challenges

 Find out more about NFPs using the AmazingStoke system

4.2.3.2 Basic Facebook API
Having decided to host the Game module of the AmazingStoke system within the social
networking site, it was necessary to explore how an app is loaded into Facebook, and how
Facebook could be used to authenticate user information.

To create an app in Facebook, a Facebook user account must be set up for the developer, and
the user must join the Facebook Developers Group via the site. From there, a link is provided
on the site to “Create New App” (see Figure 4.3).

55

Figure 4.3: Facebook Developers site, with link to Create New App in top right-hand corner

After choosing a name, agreeing to Terms & Conditions and entering authentication details,
the new App is created within the Facebook site, as shown in Figure 4.4.

Figure 4.4: App overview within Facebook Developers

By selecting the option “App on Facebook”, a form is revealed to enter the URL of the
Canvas page (that is, the URL of the external site which will be viewed via an iframe
within Facebook). Once this has been done, the app is now loaded into Facebook, and can be
accessed via the Canvas Page URL listed on the app information (as shown in Figure 4.5).

56

Figure 4.5: App information within Facebook Developers

Upon loading the Canvas Page URL, the site hosted at the Canvas URL is visible as an app
within Facebook, as shown in Figure 4.6.

Figure 4.6: An example app loaded into Facebook and accessed via the site

To allow Players to use their Facebook login information to access an app, the Facebook
Developers site gave a simple code snippet in PHP, which is reproduced below. The values of

57

$app_id and $canvas_page were taken from the app information page illustrated by
Figure 4.5

1. $app_id = "122019214564717";
2.
3. $canvas_page =
4. "http://www.dcs.bbk.ac.uk/~jpinto02/";
5.
6. $auth_url =
7. "https://www.facebook.com/dialog/oauth?client_id=" .
8. $app_id . "&redirect_uri="
9. . urlencode($canvas_page);
10.
11. $signed_request = $_REQUEST["signed_request"];
12.
13. list($encoded_sig, $payload) = explode('.',
14. $signed_request, 2);
15.
16. $data = json_decode(base64_decode(strtr($payload, '-
17. _', '+/')), true);
18.
19. if (empty($data["user_id"]))
20. { echo("<script> top.location.href='" . $auth_url .
21. "'</script>");
22. }
23.
24. // App code goes in else clause
25. else
26. { ...
27. }

This simple code section manages the user login to the app, and creates the $data array
holding information relating to the user’s Facebook account. The PHP $_REQUEST
superglobal array called in this code section contains by default the contents of arrays
$_GET, $_POST and $_COOKIE.

In this example, the information relating to a Facebook user account is encoded in a JSON
(JavaScript Object Notation) object. JSON is a text-based standard for language-independent
transfer of information in a human-readable format, based on JavaScript. As with XML,
JSON is a standard for containing information. The JSON object encoded in the
signed_request contains the information listed in Table 4.1 (taken from Facebook
Developers, 2011).

58

Table 4.1: Contents of the Facebook signed_request (Facebook Developers, 2011)

Alongside the initial code fragment to log the user in to the app using the Facebook
authentication procedure, it was necessary to include other code at the beginning of the main
program of the app related to connection to the Database and using the PHP $_SESSION
superglobal array.

1. header('P3P: CP="CAO PSA OUR"');
2. include 'db_login.php';
3. session_start();

The second and third lines of code above have been explained previously, relating to logging
in to the Database on the server computer and accessing the $_SESSION superglobal array.

The first line related to an issue that arises when PHP sessions are used in conjunction with a
site accessed via an iframe in Internet Explorer. The Game within Facebook runs from two
server machines, as illustrated in by Figure 2.1. Standard security settings in Internet
Explorer will block the setting of cookies by the Game because, as it is running on a separate
server from the Facebook site, cookies from there are considered as 3rd party cookies. The
setting of 3rd party cookies is prevented when Internet Explorer privacy settings are set at
Medium or above (Whitt, 2005).

The following line of PHP code resolves this (Whitt, 2005):

1. header('P3P: CP="CAO PSA OUR"');

This manually sets the browser privacy policy to allow the cookie required for PHP session
usage within Facebook. This is a general issue related to the use of iframes (which were
noted to be problematic in the original project proposal) and is not exclusive to Facebook.

59

4.2.3.3 Loading of the Game
Upon loading the Game into Facebook using the Facebook login information, the system first
needs to check whether this is a new Player. If so, the system should create a new record of
the Player’s details to the Users1 relation in the Database, and create their
PlayerChallenges relation.

As the main starting page for the AmazingStoke Game, this PHP program was named
index.php.

After storing the Facebook ID within the $_SESSION superglobal array, and using the PHP
getdate function to ascertain the current date before converting it to an 8-digit integer (of
the format YYYYMMDD), a query of the Database returns the Player’s record. If the
number of rows returned is 0, then the Player has not been found in the Database, and an
INSERT SQL statement should be performed. The code below demonstrates this (with
$currentDate set as described above):

1. $map_result = queryMysql($map_query);
2. $rows_returned = mysql_num_rows($map_result);
3.
4. if ($rows_returned == 0)
5. { $newPlayer = "INSERT INTO users1
6. VALUES('$userIDnumber', 'green', 'green', 'green',
7. 'green', 'green', 'green', 'green', 'green',
8. 'green', 'green', 'green', 'green', 'green',
9. 'green', 'green', 'green', 'green', 'green',
10. 'green', 'green', 'green', 'green', 'green',
11. 'green', 'green', 'green', 'green', 'green',
12. 'green', 'green', 'green', 'green', 'green',
13. 'green', 'green', 'green', 'green', 'green',
14. 'green', 'green', 'green', 'green', 'green',
15. 'green', 'green', 'green', 'green', 'green',
16. 'green', 'green', 'green', 'green', 'green',
17. 'green', 'green', 'green', 'green', 'green',
18. 'green', 'green', 'green', 'green', 'green',
19. 'green', '500', '$currentDate')";
20. queryMysql($newPlayer);
21.
22. $tasksTable = "PlayerTasks" . $userIDnumber;
23. $newTasks = "CREATE TABLE $tasksTable(TaskID
24. VARCHAR(255) NOTNULL, Completed TINYINT(1)NOTNULL
25. DEFAULT '0')";
26. queryMysql($newTasks);
27. }

60

As can be seen above, the program creates a new Player with each square of their Map set
to “Green” and a starting MarvelMoney balance of 500.

Once the system has checked whether the Player is already registered in the Database,
and created a new record for them if they are logging in for the first time, the Player’s
record from User1 can be used to create a graphic representation of the Player’s
AmazingStoke Map and other information. The Player’s record from the Database is set
as a PHP array $getMapRow.

In this first iteration of the system, the building names from the $getMapRow PHP array
are simply used to dynamically generate a grid of images of eight square by eight squares.
These images are saved in the .../drawing directory under the same directory as
index.php file, and named so that a simple string concatenation uses the Name of a
building as a reference to the image representing it. The code for this is shown below.

1. for ($i=1; $i < 65; ++$i)
2. { $square = "sq" . $i;
3. $building = $getMapRow[$i];
4. $img_string = "../drawing/" . $building . ".jpg";
5.
6. if ($i % 8 == 0)
7. echo "
";
8.
9. else echo "";
10. }

The HTML output by the PHP program also includes:

 The Player’s MarvelMoney balance

 Hyperlinks to the PHP programs to “Buy a Building”, “Take on new Challenges”,
“Authenticate Challenges”, and “Find out more about NFP using the AmazingStoke
system”.

4.2.3.4 Buying A Building
The first iteration of the program to “Buy A Building” is a simple PHP program utilising
Player input via an HTML form and an HTTP POST. The Player’s Facebook ID is
accessed via the $_SESSION superglobal array. An SQL query is sent to the Database to
retrieve the Player’s MarvelMoney balance which is stored as the PHP variable
$marvelmoney_balance. The Buildings are downloaded from the Database and
details loaded into the HTML form. The program to create this page is called
buildings.php.

If a Player attempts to purchase a Building for which they do not have enough
MarvelMoney, a message to this effect is output to the browser with a link for the Player

61

to return to their AmazingStoke map. Otherwise, an UPDATE SQL query is sent to the
Database, and the Player is redirected to index.php.

In this first iteration of the Game, the information relating to Buildings is initially hard-
coded into the PHP. It is intended that subsequent iterations of the system will access the
Buildings information from the Database when the page is loaded, using an array of
JavaScript objects

I had originally attempted to create a grid of images in index.php as an HTML form
which would pass the image location as a hidden value to the buildings.php program
via an HTTP POST request. However, this proved to be impossible with Internet Explorer, as
it was not possible to pass the reference to the square as a hidden field when using an image
within a form using the POST method (due to the nature of the POST array passed within
Internet Explorer).

4.2.3.5 Viewing And Accepting New Challenges
The first iteration of the program to View And Accept New Challenges is a simple PHP
program entitled alltasks.php.

The Player’s Facebook ID is accessed via the $_SESSION superglobal array. All
Challenges which have been approved (Live == ‘1’) are retrieved from the Database,
and output to an HTML form. Players select a Challenge by the use of radio buttons,
which allow only one value to be select from the form. The Player input is passed via an
HTTP POST request to the program taskadded.php.

taskadded.php is a short PHP program which simply accesses the Player’s Facebook
ID via the $_SESSION superglobal array and the ChallengeID via the $_POST array, and
adds the information to the relevant PlayerTasks relation.

1. $userIDnumber = $_SESSION['userIDnumber'];
2. $taskSelected = $_POST['taskSelected'];
3. $tasksTable = "PlayerTasks" . $userIDnumber;
4. $newTaskQuery = "INSERT INTO $tasksTable VALUES
5. ('$taskSelected', '0')";
6. queryMysql($newTaskQuery);

It then writes confirmation to the browser, with a link for a Player to return to
index.php.

Whilst other forms have returned the data input by the Player to the same program, this
particular functionality is handled by a separate program. This is because the
taskadded.php provides a functionality required by several different displays of the
underlying Challenges information stored in the Database. A single PHP program
which can be reused is more efficient both in terms of coding time and usage of resources. An
example of this reuse will be shown in Section 4.2.3.7.

62

4.2.3.6 Authenticating Challenges
To authenticate currently accepted Challenges, a logged-in Player clicks on a hyperlink
to launch the program yourtasks.php.

This retrieves from the Database all the Player’s information from Users1 and
Challenges in a Player’s Challenges relation where Completed == ‘0’.

1. "SELECT * FROM $tasksTable, ascharitytasks,
2. ascharities
3. WHERE $tasksTable.TaskID=ascharitytasks.TaskID
4. AND ascharities.CharityNumber =
5. ascharitytasks.CharityNumber AND Completed='0'";

This information is then output to the user as an HTML form, with text boxes for the entry of
Voucher Codes and which submits by means of an HTTP POST request to the PHP
program verify.php.

The program verify.php executes a call to the Database to retrieve a single row
containing the Challenge information from the AsCharityTasks relation.

The program must the first ascertain whether the Voucher Code entered relates to a
Challenge with a single Voucher Code that can be used multiple times, or to a
Challenge with multiple single-user Voucher Codes (which should be deleted from
the relation after one use).

If VoucherCodes == ‘1’ (i.e. there exists a separate relation of Voucher Codes), a
second call to the Database retrieves the set of Voucher Codes, and checks whether the
value entered by the Player in yourtasks.php matches a value in the relation. If so, that row
is deleted from the Voucher Codes relation. If VoucherCodes == ‘0’, then the program
checks whether the value entered by the Player in yourtasks.php matches a
ChallengeID.

In either case, if verify.php matches a Voucher Code, a call to the Database marks
the Challenge as Completed in the Player’s PlayerChallenges relation and
updates their MarvelMoney balance in Users1. The Game then outputs confirmation to
the browser. Else, an error message is written to the browser. In either case, the Player is
presented with a hyperlink to return to index.php once verify.php has completed.

4.2.3.7 NFP Information
To display information regarding the NFPs using AmazingStoke, two PHP programs were
written.

The first, orglist.php, retrieves all the CharityName information from the
AsCharities relation, sorted alphabetically. It then writes this information to the browser,

63

with each NFP assigned a simple HTML form that will submit the CharityName to
orginfo.php via an HTTP POST request when the Player presses submit.

The orginfo.php program then issues a call to the Database to retrieve the information
on the NFP from AsCharities. A second call is then issued to the Database to retrieve
that NFP’s Challenges from AsCharityTasks.

1. $organisation_query = "SELECT CharityNumber,
2. CharityName, Address1, Address2, Address3, TownCity,
3. County, PostCode, Blurb, Website FROM ascharities
4. WHERE CharityName='$charity_name'";
5.
6. $tasks_query = "SELECT * FROM ascharitytasks WHERE
7. CharityNumber='$charitynumber'";

The information retrieved from AsCharities is written as formatted text to the browser.

The information retrieved from AsCharityTasks is written to the browser as an HTML
form incorporating radio buttons, allowing a Player to select Challenges as described
in Section 4.2.3.5.

Upon selecting tasks from the form produced by orginfo.php, the Game calls
taskadded.php as also described in Section 4.2.3.5.

64

4.3 Second Iteration Of The System
This section of the report concerns the development of the second iteration of the
AmazingStoke proposed system.

Having developed an initial “proof-of-concept” system, the intention of this iteration was to
improve the user experience by more effective use of client-server workload division
discussed in Chapter 3. Client-side scripting technology begins to be significantly
implemented by use of JavaScript in the browser with Ajax technologies used to make
necessary changes server-side.

At this stage, additional non-essential functionality begins to be introduced to the system, as
well as greater instructions for users.

4.3.1 Second Iteration Of NFP Site

This section describes the addition of increased functionality to the AmazingStoke NFP
Site.

4.3.1.2 Add Challenge Form
To reduce workload of checking potentially incomplete forms via a call to a PHP program on
the server, the second iteration of the Add A Challenge form (asaddtask.php)
incorporated the following JavaScript functionality:

A JavaScript function called validateform created to check that all required fields in the
form are been completed, and that the expiry date listed is at least one day after the current
date, before the information is passed to the server. If all sections of the form are not been
complete, error messages are displayed next to the incomplete or incorrect sections through
use of the HTML elements and using the JavaScript
getElementById(‘...’).innerHTML to rewrite the document in the browser.

JavaScript is then used in combination with Cascading Style Sheets (CSS) technology to
show or hide certain areas of the form, depending on NFP choices relating to Category and
the use of multiple Voucher Codes. CSS was defined by the World Wide Web
Consortium (W3C) to apply formatting information to HTML (W3C, 2011). CSS formatting
information can be saved as separate .css file, or can be used embedded within the HTML. To
show and hide information in an HTML document, the following CSS rule can be used:

1.

The id value can then be used in conjunction with a JavaScript function to rewrite the value
of display, as follows:

1. document.getElementById('myID').style.display = ''

65

Functions using JavaScript and CSS were written to show or hide the input area for the
amount of real-world money if Fundraising were selected as Category, and to show or hide
the input area for the number of Voucher Codes required when listing a Challenge
that use multiple codes.

4.3.1.3 View Voucher Codes
Functionality was added in to this iteration of the system to allow an NFP to download
Voucher Codes as a Comma Separated Values (CSV) file. This functionality was added
in to the PHP program viewvouchers.php.

A program to create a CSV file using PHP from a MySQL database was found online on the
website WebCheatSheet.com (WebCheatSheet.com, 2009). It is included as the PHP program
downloadvouchers.php. A link was included in viewvouchers.php to run
downloadvouchers.php, passing in the name of the relation using an HTTP GET
request. It should be noted that this function has been used in its entirety from
WebCheatSheet.com, 2009, and is not the work of myself.

Additionally, functionality was added in to viewvouchers.php to allow NFPs to show
or hide the Voucher Codes onscreen, using the same JavaScript and CSS rewriting as
described in Section 4.3.1.2.

4.3.1.4 Generate More Voucher Codes
The next addition in functionality to the second iteration of the NFP Site was the
functionality to allow an NFP to generate more Voucher Codes for an existing
Challenge. This functionality was added in to the PHP program viewvouchers.php.

A simple HTML form within the page allows an NFP to specify a number of additional
Voucher Codes to generate. On submission of the form, a JavaScript function checks that
the NFP has entered a valid integer value of 1000 or less. If not, an error message is written to
the browser document using client-side scripting, else the form passes the necessary
information back to viewvouchers.php using an HTTP POST request. Additionally, if
the creation of the Voucher Codes would take the last number in the sequence to more
than 999,999, an error message is written to the document using JavaScript.

Otherwise, the requested number of Voucher Codes are then generated at the end of the
existing sequence stored in the Database.

The above functionality required the final number in the existing Voucher Code sequence.
Code is added in to viewvouchers.php to set this as a PHP variable $maximumCode
when the page is initially generated.

1. $maximumCode = 0;
2. for ($i = 0; $i < $returnVouchersRows; ++$i)
3. { $currentRow =
4. mysql_fetch_row($returnVouchersResult);

66

5. $currentCode = $currentRow[0];
6. $voucherArray[] = $currentCode;
7. $maximumCode = $currentCode;
8. }

This value is then used as a starting point in a for loop to insert more Voucher Codes to
the relevant relation.

Once the insertion has taken place on the Database, a confirmation message is written to the
reloaded viewvouchers.php document in the browser.

4.3.1.5 Cascading Style Sheets
As described in Section 4.3.1, Cascading Style Sheets (CSS) allow presentation information
regarding the HTML to be stored as a separate .css file known as an external style sheet.
Every page within the site that applies the formatting information must include within the
head section the following code:

1. <link rel=’stylesheet’ type=’text/css’ href=’...css’ />

For example, for the NFP Site, a simple style sheet to modify the font used throughout the
<body> sections of the HTML was created as follows as saved as
amazingstokestyle.css.

1. body
2. { font-family:Arial, Helvetica, sans-serif;
3. }

With the application of this stylesheet, the appearance of the page is changed from Figure 4.7
to Figure 4.8.

Figure 4.7: NFP Site Home page before use of CSS

67

Figure 4.8: NFP Site Home page after use of CSS

It was also the intention to make greater use CSS technology to improve the overall
appearance of both the NFP Site and the Game. However, unfortunately this was
something that there was not sufficient time to undertake on this project, and so only these
minor changes were made. Design issues will be explored in greater depth in Chapter 6.

68

4.3.2 Second Iteration Of Game

This section describes the addition of increased functionality to the AmazingStoke Game via
Facebook, and of the introduction of Ajax technology into the system.

4.3.2.1 Updating Player’s MarvelMoney On Login
One functionality noted in both the original project proposal and in Section 3: System
Analysis and Design is that the Game should reward Players with MarvelMoney
without the need to take on Challenges for NFPs.

One way to do this is to reward the Player each time they login based on the contents of
their Map, using the Earnings value of each Building. Functionality was added to the
index.php program to check the date of the Player’s last login against the current date.
If the Player had not logged in that day, they were redirected to the program
updater.php. This program updates the MarvelMoney and DateLastPlayed of Users1.
A message is then written out to the browser, informing the Player with the increase in the
MarvelMoney, and with a link to reload the index.php program (which will this time
not trigger the updater.php program).

Figure 4.9: Message informing the Player that their AmazingStoke Town has earned
MarvelMoney when logging in

4.3.2.2 JavaScript And CSS To Display Map / Buy Buildings Form Within
The Browser
As discussed previously, one feature of a web applications offering good user experience is
the appropriate division of client-side and server-side programming.

The first iteration of the Game used separate PHP programs to display the Map and Buy
Buildings form (index.php and buildings.php respectively). In the second iteration
of the Game, these two functions are combined as originally envisioned into one program,

69

which uses JavaScript to makes changes to the in-browser document and uses Ajax calls to
update the Database.

Section 4.3.1.2 already described how JavaScript and CSS can be used to display or hide
certain area of a browser document. It was therefore relatively straightforward to write a
JavaScript function to display the Buy A Building Form and hide the Map, and vice versa,
when the Player clicks on their Map or clicks the “Click Here To Return To Your Map”
button respectively.

To make changes within the browser to the Player’s MarvelMoney balance and to the
Buildings on their Map without a call to the server, it was necessary for this data to be
accessible as variables that could be modified within the browser. Therefore, it was necessary
to convert the PHP $MapArray to a JSON string (as described in Section 4.2.3.2) using the
PHP function json_encode. If the Player does not have enough MarvelMoney to
purchase the building, an error message is written to the browser using elements
and JavaScript innerHTML. Otherwise, the JSON MapArray and the MarvelMoney
amount are updated using JavaScript.

1. $playerArray = $getMapRow;
2. $playerMapAsArray = json_encode($playerArray);

Now that the buying of a Building is being handled within the browser on the client-side,
it is necessary to write a program to carry out the behind-the-scenes call to update the
Database.

4.3.2.3 Rewriting Map Using JavaScript And Ajax
As described in the original project proposal, Ajax (Asynchronous JavaScript And XML) is a
collection of technologies to run behind-the-scenes server scripts. In this case, Ajax is used to
update the Database when a Player buys a new Building as described below.

The key JavaScript functionality used in Ajax to run server-side scripts without reloading the
page is the XMLHttpRequest object. As Flanagan explains in his book JavaScript: The
Definitive Guide (Flanagan, 2011), an HTTP request consists of four parts:

 the HTTP request method (such as GET or POST)

 the URL being requested on the server-side

 an (optional) body of information in the form of request headers

 an (optional) request body

(Flanagan, 2011). This information must be included within the attributes of the JavaScript
XMLHttpRequest object.

Once the XMLHttpRequest object has been created within the client-side script, it must be
opened specifying the request method, the subject of the request, and whether the request

70

should be handled asynchronously. Other optional information which can be included in the
open method includes a username and password. Finally, once the XMLHttpRequest
object has been created and opened, it can be sent as request to the server to run the specified
program.

The section of code below shows the creation of the XMLHttpRequest object entitled
dataSendObject. This creation must be handled differently for versions of Internet
Explorer before version 7. A function is written to ensure confirmation is written to the
browser when the status of the dataSendObject changes, for example when the open
function is called upon it. This is followed by the rewriting of the document in the browser,
followed opening of the dataSendObject, followed the sending of this
XMLHttpRequest object to the server-side program openAjax.php with the variables
to be used in the Database update included in the URL.

The following function is based on an example from W3Schools (W3C, 2011).

1. function sendData()
2. {
3. // Creates object in IE7+, Firefox, Chrome, Opera,
4. // Safari
5.
6. if (window.XMLHttpRequest)
7. { dataSendObject = new XMLHttpRequest();
8. }
9.
10. // Creates object in IE6, IE5
11. else
12. dataSendObject = new
13. ActiveXObject('Microsoft.XMLHTTP');

14. dataSendObject.onreadystatechange=function()
15. { if (dataSendObject.readyState==4 &&
16. dataSendObject.status==200)
17. {document.getElementById('sentToServer').innerHTML
18. = 'Congratulations on your new AmazingStoke
19. purchase!
';
20. }
21. }
22.
23. buildingBought = '';
24. for (i = 0 ; i <
25. document.getElementById('buyingForm').building.
26. length; i++)
27. { if
28. (document.getElementById('buyingForm').building[i].

71

29. checked)
30. buildingBought = document.getElementById
31. ('buyingForm').building[i].value;
32. }
33.
34. squarePlaced = document.getElementById('buyingForm')
35. .squareValue.value;
36. mapArrayIndex = squarePlaced.substring(2);
37. sendAjaxString = 'openAjax.php?square=' +
38. mapArrayIndex + '&building=' + buildingBought +
39. '&balance=' + currentBalance + '&player=' +
40. playerID;

41. dataSendObject.open('GET', sendAjaxString, true);
42. dataSendObject.send();
43. }

The program openAjax.php is a PHP program which extracts information regarding
changes to the MarvelMoney amount and placement of Buildings on the Map using the
$_GET superglobal array, and makes the necessary changes to Database.

1. $sentSquare = $_GET['square'];
2. $sentBuilding = $_GET['building'];
3. $sentBalance = $_GET['balance'];
4. $sentPlayer = $_GET['player'];
5. $squareString = 'sq' . $sentSquare;
6.
7. $updateMapQuery = "UPDATE users1 SET
8. $squareString='$sentBuilding', money='$sentBalance'
9. WHERE playerID='$sentPlayer'";
10. queryMysql($updateMapQuery);

4.3.2.4 Cascading Style Sheets
As described in Section 4.3.1.5, the external style sheet amazingstokestyle.css was
created and applied to the NFP Site. In the second iteration of the Game, this style sheet
was also applied to the Game.

72

4.4 Third Iteration Of The System
It was the original intention of this project to implement a third iteration of the AmazingStoke
system, to include further refinements and additional functionality.

Unfortunately, I had underestimated the amount of time that would be needed to learn PHP
and the additional JavaScript needed for this system, and the iterative approach described
meant that more complex functionality was left until later in the development of the system.

Therefore, although I had intended to implement more of the AmazingStoke system, all that I
was able to complete by the project deadline was the two iterations described in Section 4.2.

The key functionality that I had hoped to implement but was unable due to time was:

 Storing all NFP information in the Game client-side in the browser, to speed up Player
experience once the initial loading has completed

 Storing all Challenge information in the Game client-side in the browser, to speed up
Player experience once the initial loading has completed

It was an important learning point that whilst the basics of new languages (such as PHP and
JavaScript) may be learnt quickly, it takes time and practice to be able to develop more
complex system using these tools. In hindsight, it might have been more efficient to use a
server-side programming framework such as Grails (SpringSource, 2009), which is built
upon the Groovy language studied in-depth in the Object-Oriented Design and
Programming module of the MSc Computer Science.

In addition, there were a number of development frameworks that could have assisted with
the implementation of this project, which as a novice to these technologies I did not
investigate fully. These key learning points will be addressed in Chapter 7.

Although lack of remaining time meant that it was not possible to complete the writing of the
development of other features of the AmazingStoke system, the planned further functionality
is described in detail in Chapter 6.

73

Chapter 5: Demonstration
This chapter describes, via a series of screenshots, the key activities of the system, presenting
screenshots and descriptions of the processes used by the distinct user groups (Players and
NFPs) to achieve their goals within the system.

As discussed previously in this report, this system is hosted live via provider One.com.

The NFP site is hosted at:

www.astoke.co.uk/charities

The Game is hosted at:

www.astoke.co.uk

All aspects of the system were tested in the two most frequently used browsers, Internet
Explorer (Version 9) and Mozilla Firefox (Version 5).

74

5.1 NFP Site
To demonstrate the functionality of the NFP site, a mock NFP organisation was set up on the
Database using phpMyAdmin. The organisation was given the name My New Charity, and
set up as shown in Figure 5.1.

Figure 5.1: phpMyAdmin display of NFP account set up for My New Charity

5.1.1 Login
As seen in Figure 5.1, the email address assigned to the NFP is
johnsmith@mynewcharity.org.uk, and the password assigned is pass1. Login was
attempted using these details.

75

Figure 5.2: NFP Site Welcome Page

First, the error checking was tested by entering an invalid email address (see Figure 5.3).

Figure 5.3: NFP Site Login page after an invalid (i.e. not in the Database) email address was
submitted

Using correct login details as described above, the NFP then successfully logged in (see
Figure 5.4). No Challenges are currently listed for the NFP, so the initial page first displays
only instructions relating to the system.

Figure 5.4: NFP Site Home page for logged in NFP My New Charity

76

5.1.2 Update Details
As seen in Figure 5.1, this NFP was originally created on the Database with no description of
the organisation. Therefore, a description is added in using the Edit Your Description
(aseditinfo.php) page.

Figure 5.5: The Edit Your Description form, ready to be submitted

Using phpMyAdmin, the change to the Database is then confirmed. The changed information
is highlighted in green in Figure 5.6.

Figure 5.6: phpMyAdmin display of NFP account for My New Charity after
aseditinfo.php

77

5.1.3 Add A Challenge

To test the program asaddtask.php, I attempted to add a simple Fundraising challenge,
asking Players to make a £5 donation to My New Charity, with 500 Voucher Codes initially
generated.

First, the error checking was tested by submitting an incomplete form (see Figure 5.7).

Figure 5.7: NFP Site Add A Challenge page after a blank form was submitted – note error
message “Please give your challenge a title!”

Then correct details were entered onto the form, with the JavaScript / CSS displaying of
certain initially “hidden” elements of the page.

Figure 5.8: NFP Site Add A Challenge page with hidden text areas “Fundraising Target”
and “Voucher Details” displayed

78

After submission of the completed form, returning to the homepage now shows the updated
information on NFP Challenges (Figure 5.9).

Figure 5.9: NFP Site Homepage for logged in NFP My New Charity, now showing the
Challenge added in Section 5.1.3

By using phpMyAdmin to view the Database, it is also possible to see the successful creation
of a relation of Voucher Codes for this Challenge, entitled Task123499.

Figure 5.10: phpMyAdmin display of relation Task123499

It can be seen from Figure 5.10 that 500 rows have also been successfully inserted into this
relation containing Voucher Codes.

5.1.4 View Voucher Codes
By returning to the NFP Site homepage and click on the button “View Voucher Codes” for
the Challenge added in Section 5.1.3, it is possible to see the link to download these Voucher
Codes as a CSV file.

79

Figure 5.11: NFP Site View Vouchers for logged in NFP My New Charity, now showing the
Vouchers Codes for Challenge added in Section 5.1.3

By clicking the link “Click here to download these codes as a CSV file”, a CSV file entitled
voucher_codes.csv is created and opens automatically using (in this instance) Excel.

Figure 5.12: CSV file of Vouchers Codes for Challenge added in Section 5.1.3

80

5.1.5 Generate More Voucher Codes

Next, the functionality to create more Voucher Codes was tested. First, the string
“Hundred” was entered to check the error checking of the form. The result is shown in
Figure 5.13.

Figure 5.13: Error message for generating more Vouchers Codes

Then, the number “100” was entered and the form submitted. The result is shown in Figure
5.14, with the confirmation message written to the browser and the number of Voucher
Codes updated to 600.

Figure 5.14: Confirmation of generating more Vouchers Codes

81

5.1.6 Logout

The final functionality to test was the program aslogout.php. Figure 5.15 shows the
confirmation screen after the NFP clicks the “Log Out” link.

Figure 5.15 NFP Site confirmation of successful logout by NFP

82

5.2 Game
To demonstrate the functionality of the Game, I used my real-world Facebook account, with
Facebook ID of 762451966 (an older 9-digit account number).

5.2.1 Create Account Via Facebook
To create a new Player account in the AmazingStoke system, I first logged in to my Facebook
account and searched for the AmazingStoke in Facebook’s top search bar. As the app had
been loaded into Facebook as described in 4.2.3.2, it appeared in the search results as shown
in Figure 5.16.

Figure 5.16: Facebook Search results for “AmazingStoke”

By clicking on the link to the AmazingStoke app, Facebook displayed the authentication page
for a potential Player to authorise the app to access their basic Facebook information, as
shown in Figure 5.17.

Figure 5.17: Authorisation of access to Facebook information for AmazingStoke app

83

Clicking on the link to “Allow” the app then redirects to the Game home, showing a blank
Map and a MarvelMoney balance of 500, as shown in Figure 5.18.

Figure 5.18: Game Home within Facebook showing Map and MarvelMoney balance of 500

By using phpMyAdmin to view the Database, it is also possible to see the successful insertion
of a new Player in the Users1 relation (see Figure 5.19), and the creation of a Player
Challenges relation (see Figure 5.20).

84

Figure 5.19: phpMyAdmin display of Player account for Facebook User 762451966 after
index.php

Figure 5.20: phpMyAdmin display of Player Challenges relation for Facebook User
762451966 after index.php

5.2.2 Log Back In Via Facebook
One the Player has authorised to AmazingStoke app, a link to the app is automatically added
to the Player’s main Facebook home page (this is built-in functionality of Facebook, shown
in Figure 5.21).

85

Figure 5.21: Facebook homepage with a link to the authorised AmazingStoke app

To return to the Game, it is then a simple matter of clicking on the small AmazingStoke icon
displayed on the Player’s Facebook homepage.

5.2.3 Buy A Building
Having returned to the Game as described in Section 5.2.2, the initial Map is displayed as
shown in Figure 5.18. As instructed on the screen, the Buy A Building View is accessed by
clicking on the Square of the Map on which the Building is to be placed.

Initially in this case, the Square selected is the top right-hand Square. Clicking on this
displays the Buy A Building form as shown in Figure 5.22.

86

Figure 5.22: Buy A Building View within Facebook

By selecting a Tree from the form, and clicking the “Buy This Building!” button, the Player’s
information is updated both in the Browser and on the Database, and the view changes back
to the Map view as shown in Figure 5.23. This demonstrates that both the image in the top
right-hand square and the MarvelMoney amount have changed.

Figure 5.23: Map View after Buying A Building

Figure 5.24 shows the use phpMyAdmin to view the Database to see the successful update of
the Users1 relation via a behind-the-scenes Ajax call from the Game. As can be seen, the
value of sq8 is “tree”, whereas previously it had been “green”.

Although not shown, at this point various other Buildings were purchased to demonstrate the
functionality in Section 5.2.7.

87

Figure 5.24: phpMyAdmin display of Users1 relation after index.php

5.2.4 View And Accept A New Challenge
Testing now took place to Accept the Challenge posted by mock NFP organisation My New
Charity in Section 5.1.3. From the Map view, the link “Click here to Take On New
Challenges!!” was followed to launch alltasks.php, as shown in Figure 5.25.

Figure 5.25: View Challenges within Facebook

Figure 5.25 shows that the Challenge added in Section 5.1.3 has successfully been retrieved
from the Database by the Game. At this point, it is the only Challenge listed on the Database,
but a more populated AsCharityTasks relation would result in a longer list of available
Challenges.

Upon clicking the radio button and “Take on this Challenge!”, the Player is taken to the
confirmation screen shown in Figure 5.26.

Figure
5.26: Challenge acceptance confirmation within Facebook

88

5.2.5 View NFP Information
To view information on the NFP My New Charity, the link “Click here to Find Out More
About Charities!” was clicked from the Map view to launch orglist.php as shown in
Figure 5.27 (note that a second mock NFP, Fans Of Cats, was added to the Database for
testing purposes).

Figure 5.27: List of NFPs using AmazingStoke within Facebook

By clicking on the button “Find out more!” next to My New Charity, the program
orginfo.php is launched using the details of My New Charity passed via an HTTP POST
request. The resultant page is shown in Figure 5.28.

Figure 5.28: Information held on My New Charity on AmazingStoke within Facebook

89

It can be seen from Figure 5.28 that the changes to information made in Section 5.1.2 and
Section 5.1.3 are reflected within the Game.

5.2.6 Authenticate A Challenge
To authenticate an accepted Challenge, the link “Click here to View Your Current
Challenges!!” was clicked from the Map view to launch yourtasks.php as shown in
Figure 5.29.

Figure 5.29: Accepted Challenges for AmazingStoke within Facebook

For the purposes of testing, on the Voucher Codes (311880) shown in Figure 5.12 was
entered on the form and “Submit Voucher Code” clicked to launch verify.php. The
confirmation of this Challenge authentication is shown in Figure 5.30.

Figure 5.30: Confirmation of correct Voucher Code for AmazingStoke within Facebook

On returning to the Map view, MarvelMoney balance has been updated, and the Challenge
no longer shows when “Click here to View Your Current Challenges!!” is clicked.

The changes to the Database, that is, the removal of Voucher Code 311880 from the list of
available codes, can be verified by use of phpMyAdmin, or by logging back in to the NFP
Site and using the JavaScript functionality of Section 5.1.4 to display the remaining Voucher
Codes onscreen.

90

Figure 5.31: NFP Site View Vouchers for logged in NFP My New Charity, with Voucher
Codes 311880 no longer shown in list

As can be seen in Figure 5.31, the Voucher Code 311880 is now no longer listed as
available.

91

5.2.7 Update A Player’s MarvelMoney On Login
One day after the initial Player account was created as described in Section 5.2.1, the Game
was logged back in to as described in Section 5.2.2.

On this occasion, on logging in, before reaching the Map View, notification was displayed
that the MarvelMoney balance had been updated based on the current Map. This
notification is shown in Figure 5.32.

Figure 5.32: Confirmation of updated MarvelMoney balance when logging in to
AmazingStoke on unique day within Facebook

These changes are also reflected in the Database.

92

Chapter 6: Areas For Exploration
As stated in Section 4.4, it was not possible to complete all the intended functionality of the
AmazingStoke system, as I underestimated the amount of time involved in learning the
necessary amount of PHP and JavaScript, and implementing the first two iterations of the
system.

This chapter therefore talks through the functionality that was intended for inclusion in the
system and which would be included in the development of AmazingStoke as a fully-fledged
system (as opposed to the prototype that it was possible to build during this project).

6.1 Development Technologies
Templating

It was the intention to use a PHP templating system, in order to separate the logic of the PHP
programs, from the layout of that page (i.e. the HTML output) (Lerdorf, Tatroe, & MacIntyre,
2006). This would allow the programming and the design of the web pages to be separate,
increasing flexibility and reusability within the system. It should be noted that templating can
incur a performance penalty to the user as it requires more calls to the server, and its
advantage is to the program creator rather than the user.

It was the intention of this project to use the popular PHP templating engine Smarty, which
turns templates into PHP code and caches them, replacing only when the template is changed.

However, having built the initial iterations of the system and looking into Smarty in more
detail, it became apparent that extending this across the site would require more time than had
been allowed for this. The use of PHP templating would be a priority addition for the next
iteration of the AmazingStoke system.

JavaScript And PHP Objects

Chapter 3 made significant use of an object-oriented design methodology in creating a
design for the system. However, in the implementation of this project using PHP and
JavaScript – both of which support object-oriented programming – only the built-in objects of
the programming languages were included. Greater use of object-oriented programming – as
opposed to the mostly functional programming implemented in the first two iterations of the
system – could have led to a more reusable, adaptable and robust system.

As an example, aspects of the system such as Maps and Buildings were designed as
objects with methods and attributes in Chapter 3, but were not implemented as objects in the
current system.

Implementing these a JavaScript objects on the client-side could have led to simpler, more
robust code, and could have made it easier to implement a greater amount of client-side
functionality, and therefore future iterations of the system should involve a shift towards

93

greater use of objects in the code. This would have made it easier for the program creator to
implement a more seamless user experience.

The jQuery Library

As noted in Section 4.1.3, one of the difficulties with the JavaScript API is the major
differences in the way that JavaScript is implemented in different browsers (as seen, for
example, in the creation of XMLHttpRequest object in Section 4.3.2.3. One system to
assist in the creation of JavaScript is jQuery, a free library to make common JavaScript
tasks easier and manage the differences between browsers (Flanagan, 2011). jQuery
typically uses a CSS selector to specify a set of elements within the document, then returns an
objects representing the set. The object’s methods can then be used to modify all the elements
represented by the object.

It was my intention to learn to use the jQuery library – both as a personal learning objective
and to assist in the creation of JavaScript for this system. However, once I had explored the
basics of JavaScript as implemented in this system, insufficient time remained to then learn
jQuery as a tool for creating and managing JavaScript functionality. In hindsight, earlier
adoption of the jQuery library could have meant greater time for implementing more of the
extensions to the system detailed in this chapter.

Graphics And Cascading Style Sheets

As described in Section 4.3.1, a PHP templating engine such as Smarty allows for the
separation of programming logic from presentation. In addition to this, Cascading Style
Sheets (CSS) which were described briefly in Section 4.3.1, and allow presentation
information regarding the HTML to be stored as a separate .css file.

It was also the intention to use CSS technology to improve the overall appearance of both the
NFP Site and the Game. However, unfortunately this was again something that there was not
sufficient time to undertake on this project. Creation of more aesthetically pleasing visuals is
foreseen as an addition for a later iteration of the AmazingStoke system.

94

6.2 System Functionality
Social Network Integration

As noted in the original project proposal and throughout this report, one of the expected
advantages of implementing the Game as an app within Facebook was the planned use of the
Facebook API for social networking within the Game. The Graph API was discussed in
Section 4.1.5, and researching the API suggested that it could be used for finding and adding
Facebook friends as in-Game contacts, messaging, and setting challenges for other
Players.

As explained in the Facebook Developers site (Facebook Developers, 2011), the object to
represent a Facebook account holders in the Graph API is a User object. This object holds
various attributes of the Facebook account holders. In addition, the read_friendlists
method on a User object returns the Facebook account holder’s friends as an array of names
and Facebook User IDs (Facebook Developers, 2011).

Due to the issues already discussed regarding the amount of time spent learning the basic
PHP and JavaScript tools, and the issues regarding changes to the hosting of Facebook apps
as discussed in Section 4.1.5, the intended social networking functionality was not added in
to this version of the AmazingStoke system. However, this would be a priority addition to the
next iteration of the AmazingStoke system.

Pop-Out Games

It was suggested in the original project proposal that clicking on the Buildings of an
AmazingStoke Map could launch separate mini-games (such as Noughts and Crosses), either
in separate pop-out windows or within the main iframe. It was noted from the original
project proposal onwarsd that these additional games would not be a key part of the system,
and this is functionality that could be added in at a much later iteration. It could also be added
in for certain Buildings and not others, and is envisioned as a series of flexible plug-ins
for the main AmazingStoke system.

System Security

For the Game site, user login information is stored and managed by Facebook, and additional
security is not required. In addition, the AmazingStoke Database does not hold any
information on the Players other than their Facebook User IDs at this stage. However, a
greater amount of information is held about NFPs using the AmazingStoke system. In
launching a full version of this system, it would be necessary to significantly improve the
security of the system, both in terms of access to NFP data and potential malicious attacks on
the NFP Site.

Nixon notes in his book Learning PHP, MySQL and JavaScript that a programmer should
also ensure that data sent using a POST or GET request should be processed to ensure

95

malicious code has not been inserted (Nixon, 2009). He discusses various options of
“sanitising” user input – that is, ensuring that it does not contain malicious code. He also
presents a series of functions to prevent escape characters being injected into a string for
MySQL, getting rid of unwanted slahes, and removing any HTML from user input. A priority
task for the next iteration of the AmazingStoke system would be the creation and utilisation of
the necessary functions to sanitise all user input to the system from the various HTML
forms.

In addition to this, the password security for NFPs needs to be improved in the next iteration
of the system. A plausible way of doing this would be to use a one-way function (such as
PHP md5 or sha1 functions, which convert strings to 32-character and 40-character
hexadecimal numbers respectively). In addition, adding additional text to strings before the
one-way function is carried out would help prevent brute-force attacks on the NFP Site.

6.3 Further Developments
Standalone Game

It was noted in Section 3.4.2 that some popular Facebook apps such as FarmVille (Zynga
Games Inc., 2011) are mirrored in a stand-alone version that does not include the Facebook
functionality but are still played casually online. Although it falls beyond the scope of this
project, a potential future iteration of the AmazingStoke system could be the inclusion of an
alternate Game View / Controller, hosted on a separate site and connecting to the same
relations of NFPs and Challenges as the Facebook version of the Game.

Mobile Gaming

As stated in the original project proposal, the very earliest idea for the AmazingStoke game
was as a game for an internet-enabled phone such as the iPhone or an Android phone. This
idea was not implemented for various reasons discussed in the original project proposal.
However, it is possible that a version of the Game could be developed for mobile phones, and
although it falls outside the scope of this project, this alternate version could include pop-up
games and different volumes of information downloaded at login.

96

Peer-To-Peer Challenge Creation And Rewarding

One suggestion that was put forward when discussing the AmazingStoke system informally
with NFPs was the suggestion that the system could include mechanisms for Players to
add Challenges to the Database themselves. That is, rather than NFP organisations
taking a top-down approach to social change using gaming, individuals would be able to
challenge and reward each other.

The value of peer-to-peer challenge setting in gaming was discussed in the original project
proposal. Online games already using such a concept include Chore Wars, an online game in
which members of a household create avatars and award each other in-game points
depending on the amount of household tasks they complete (Davis, 2007).

It could be possible to create separate versions of the AmazingStoke Game in which
Players can create as well as set Challenges for each other. These versions could be
downloadable standalone versions, which do not overlap with the moderated Game described
in this project report. This idea would take the Game outside the scope of a System
Administrator and see it being used as tool by which community groups, organisations or
individuals could “gamify” (McGonigal, 2011) any aspect of social engagement that they
choose. As with the mobile version described above, this game could be enhanced by the
addition of pop-out games.

Although this idea fell outside the scope of the project, it holds interesting potential for
development of the existing AmazingStoke system.

97

Chapter 7: Conclusions
The initial proposal was to create an online game for the NFP sector, which would allow
NFPs to reward supporters for real-world actions via a Facebook game. It was intended that
use of the Facebook platform would not only make it easier for players to sign up and return
to the game, but that the system would leverage social networking features of Facebook such
as linking other players as friends or sending in-game requests to friends. At the start of the
project, I had some theoretical knowledge of designing and implementing a web-based
application, but little practical experience of building web-based systems.

The system described in this report implements some of the basic functionality listed in
Section 3.1. A basic NFP site was built, allowing NFPs to log in, add challenges to the
system, view available voucher codes, generate more codes, and update their organisational
information. A basic game was built and successfully hosted within the Facebook site,
allowing players to register for the game, buy in-game buildings using the credits known as
MarvelMoney, take on challenges, and find out more about NFPs using the system. In certain
places, the game used JavaScript and Ajax to make the player experience fast and seamless
whilst carrying out behind-the-scences calls to the server to makes changes to a database.

I underestimated the amount of time involved in learning PHP and JavaScript, and this meant
that many features intended in the original proposal were not implemented in this version of
the system. In particular, the social networking features of Facebook were not fully exploited
in this version of the application. Issues such as scaling Facebook applications, pop-up games
and additional security were not explored as hoped in this project. Although user testing was
carried out informally throughout the development of the system, and a walkthrough included
in Chapter 5, a formal set of user tests with NFPs and players was not carried out as
originally intended.

In addition, my plan to learn the basics of the tools and then “add in” at a later point
technologies such as PHP templating and jQuery meant that the AmazingStoke system at
this point lacks the sophistication and modularity for which I had hoped.

The design methodology used – an object-oriented approach using UML – was reasonably
thorough and provided a solid framework for the implementation of the system. However, my
actual approach to the implementation did not incorporate many object-oriented features, and
so parts of the design work were unused in the implementation. This, in addition to the time
spent learning PHP, leads me to the conclusion that although I gained a lot personally by
learning PHP, the system might have been more developed and elegant had I used Grails
(SpringSource, 2009) as the server-side language.

Overall, I believe that the AmazingStoke system described in this report stands as an
interesting prototype for the intended system. I was able to carry out solid background
research relating to the idea for the initial project proposal, and implement enough
functionality to create the basis for a full working system. I also learned a huge amount over
the course of this project, both in terms of programming skills (PHP and JavaScript) and also

98

regarding the challenges of developing web-based systems, such as browser compatibility
issues and issues relating to integrating application into an existing system such as Facebook.

The AmazingStoke system described in this system did not live up to all my initial hopes and
goals, due to my inexperience as a programmer and some of the planning decisions (such as
leaving investigation of jQuery to the end of the project). However, the learning from this
project in the development of web-based applications will be of great benefit to me in the
future. It is also my hope that the research undertaken and the prototype developed means
that development of the AmazingStoke system could carry on after this project, to one day
create a genuinely valuable tool for charities and other not-for-profit organisations.

References
Argerich, L., Lea, C., Egervari, K., Anton, M., Hubbard , C., Fuller, J., et al. (2002). Professional

PHP4 XML. Wrox Press.

Avison, D., & Fitzgerald, G. (2002). Information Systems Developer: Methodologies, Techniques &
Tools. 4th Edition. Maidenhead, Berkshire: McGraw-Hill Education.

Charity Commission. (2011). Retrieved September 15, 2011, from The Charity Commission for
England and Wales: http://www.charity-commission.gov.uk/

Comer, D. (2004). Computer Networks and Internets. 4th Edition. Pearson.

Davis, K. 2007. Chore Wars (2007). Retrieved 7 April 2011, from Chore Wars.
http://www.chorewars.com

Dennis, A., Wixom, B., & Tegarden, D. (2010). Systems Analysis and Design with UML: An Object-
Oriented Approach, 3rd Edition. Hoboken, New Jersey: Wiley.

EasyPHP. (2011). Retrieved September 15, 2011, from EasyPHP: http://www.easyphp.org

Eklund, K., & McGonigal, J. (2007). Retrieved April 2, 2011, from World Without Oil:
http://www.worldwithoutoil.org

Facebook Developers. (2011). Retrieved September 15, 2011, from Facebook Developers:
http://developers.facebook.com

Facebook Inc. (2011). Retrieved September 15, 2011, from Facebook: http://www.facebook.com

Feiler, J. (2008). How To Do Everything: Facebook Application. New York: McGraw Hill.

Flanagan, D. (2011). JavaScript: The Definitive Guide. 6th Edition. Sebastopol, California: O'Reilly
Media Inc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Indianapolis: Addison-Wesley.

Gibson, O. (2006, December 5). Charity hopes to make real point in virtual game world. The
Guardian, p. 5.

Heinemeier Hansson , D. (2003). Retrieved September 19, 2011, from Ruby on Rails:
http://rubyonrails.org/

Jacobs, S. (2006). Beginning XML with DOM and AJAX. Apress.

JustGiving. (2011). Retrieved September 15, 2011, from JustGiving: http://www.justgiving.com

Larman, C. (2004). Applying UML and Patterns: An introduction to object-oriented analysis and
design and iterative development. Upper Saddle River, New Jersey: Prentice Hall PTR.

Lerdorf, R., Tatroe, K., & MacIntyre, P. (2006). Programming PHP. Sebastopol, California: O'Reilly
Media Inc.

McGonigal, J. (2011). Reality Is Broken: Why Games Make Us Better and How They Can Change
The World. London: Jonathan Cope.

Microsoft. (2011). Retrieved September 19, 2011, from Active Server Pages:
http://msdn.microsoft.com/en-us/library/aa286483.aspx

Moller, A., & Schwartzbach, M. (2006). An Introduction to XML and Web Technologies.
Indianapolis: Addison-Wesley.

MySQL. (2011). About MySQL. Retrieved September 15, 2011, from MySQL:
http://www.mysql.com/about/

Nixon, R. (2009). Learning PHP, MySQL and JavaScript. Sebastopol, California: O'Reilly Media Inc.

Office of the Scottish Charity Regular. (2011). Retrieved September 15, 2011, from Office of the
Scottish Charity Regular: http://www.oscr.org.uk

One.com. (2011). Retrieved September 15, 2011, from One.com: http://www.one.com

Ramakrishna, R., & Gehrke, J. (2003). Database Management Systems. 3rd Edition. Maidenhead,
Berkshire: McGraw-Hill Education.

See The Difference. (2011). Retrieved September 15, 2011, from See The Difference :
http://www.seethedifference.org

SpringSource. (2009). Retrieved September 15, 2011, from Grails: http://grails.org

Sun Developer Network (SDN), Oracle. (2010). Retrieved September 19, 2011, from JavaServer
Pages Technology: http://java.sun.com/products/jsp/docs.html

Twitter. (2011). Retrieved September 15, 2011, from Twitter: www.twitter.com

UN World Food Programme. (2009). Retrieved April 2, 2011, from FreeRice:
http://www.freerice.com

Virgin Money. (2011). Retrieved September 2011, 2011, from Virgin Money Giving:
http://www.virginmoneygiving.com

W3C. (2011). Browser Statistics. Retrieved September 15, 2011, from W3Schools:
http://www.w3schools.com/browsers/browsers_stats.asp

W3C. (2011). CSS Introduction. Retrieved September 15, 2011, from W3Schools:
http://www.w3schools.com/css/css_intro.asp

W3C. (2011). Standards. Retrieved September 15, 2011, from W3C: http://www.w3.org/standards/

WebCheatSheet.com. (2009). Creating Word, Excel and CSV files with PHP. Retrieved September
15, 2011, from WebCheatSheet.com:
http://www.webcheatsheet.com/php/create_word_excel_csv_files_with_php.php#csvheader

Whitt, J. (2005, November 18). PHP Session / Cookie in Frames Using Internet Explorer. Retrieved
Septembe 15, 2011, from James Whitt's Blog:
http://james.jamesandkristin.net/2005/11/18/php-session-cookie-in-frames-using-internet-
explorer

Yahoo! Inc. (2011). Best Practices for Speeding Up Your Web Site. Retrieved September 15, 2011,
from Yahoo! Developer Network: http://developer.yahoo.com/performance/rules.html

Zynga Game Network Inc. (2011). Retrieved September 15, 2011, from CityVille:
http://apps.facebook.com/cityville/

Zynga Games Inc. (2011). Retrieved September 15, 2011, from FarmVille:
http://apps.facebook.com/onthefarm

Appendix A: Use Cases
Use Case 1: Login To Game

Use Case 1: Login To Game

Description Use Case for Player login to Game

Actors Player, Game, Facebook Site, Database

Assumptions Player has Facebook account

Steps 1. Player logins in to Facebook
2. Player select AmazingStoke app from bookmark or search results
3. Facebook performs authentication process for apps
4. Game retrieves system $CurrentDate
5. Game retrieves Player information from Database
IF Player not in Database
6. EXTENDS USE CASE 1.A. Register New User
ELSE IF DateLastPlayed != CurrentDate
7. EXTENDS USE CASE 1.B. Update Player Account
END IF
8. Game sets $MapArray
9. Game sets $BuildingArray
10. Game retrieves Challenges information from Database and sets

$ChallengeArray
11. PERFORM USE CASE 2 Display Map View

Use Case 1.a: Register New Player

Use Case 1.a: Register New Player

Description Use Case for registering new Game Player
Extends Use Case 1: Login to Game

Actors Game, Database

Assumptions Use Case 1: Login to Game

Steps 1. Game sends query to Database (INSERT INTO Users1 VALUES…)
2. Game sends query to Database (CREATE TABLE

PlayerChallenges$playerID)

Use Case 1.b: Update Player Account

Use Case 1.b: Update Player Account

Description Use Case for updating Player login on unique date
Extends Use Case 1: Login to Game

Actors Game, Database

Assumptions Use Case 1. Login to Game

Steps FOR (Building in $MapArray)
1. (MarvelMoney = MarvelMoney + Buildling.Reward)
END FOR
2. Game sends query to Database (SET MarvelMoney=’MarvelMoney’,

DateLastPlayed= ‘$CurrentDate’)

Use Case 2: Display Map View

Use Case 2: Display Map View

Description Use Case for displaying Map View in Game

Actors Game

Assumptions Use Case 1. Login to Game

Steps 1. Game write header information to browser
FOR (Building in $BuildingArray)
2. Game displays Building information
 IF (BuildingsDisplayed % 8 == 0)
3. Game writes
 to browser
 END IF
END FOR

Use Case 3: Buy Building

Use Case 3: Buy Building

Description Use Case for buying Building in Game

Actors Player, Game, Database

Assumptions Use Case 4: Display Buy Buildings View
Player has submitted form from Buy Buildings View

Steps 1. Game updates $MapArray
2. Game updates $MarvelMoney
3. Game sends Ajax write to Database (SET sq..=.., MarvelMoney=

MarvelMoney - Building.Cost)

Use Case 4: Display Buy Buildings View

Use Case 4: Display Buy Buildings View

Description Use Case for displaying Buying View in Game

Actors Player, Game, Database

Assumptions Use Case 1: Login to Game
Use Case 2: Display Map View

Steps 1. Player clicks on square in browser
2. Game writes form to browser
FOR (Building in$BuildingArray)
3. Game displays Building information
IF (Player submits form)
 IF (Building.Cost > MarvelMoneyBalance)
4. PERFORM USE CASE 4.A. Alert Insufficient MarvelMoney
 ELSE
5. PERFORM USE CASE 3. Buy Building
6. PERFORM USE CASE 2. Display Map View
 END IF
END IF

Use Case 4.a: Alert Insufficient MarvelMoney

Use Case 4.a: Alert Insufficient MarvelMoney

Description Use Case for dealing with error in Use Case 3: Buy Building

Actors Game

Assumptions Use Case 3: Buy Building

Steps 1. Game writes to <div> area in browser “Sorry! You don’t have enough
MarvelMoney to purchase that Building.”

Use Case 5: Choose New Challenge

Use Case 5: Choose New Challenge

Description Use Case for adding Challenge to Player Challenges in Game

Actors Player, Game, Database

Assumptions Use Case 6: Retrieve NFP Challenges

Steps 1. Player selects Challenge
2. Player submits form
3. Game sends query to Database (INSERT INTO

PlayerChallenges$playerID VALUES ($taskID, ‘0’)
4. Game writes confirmation message to browser

Use Case 6: Retrieve NFP Challenges

Use Case 6: Retrieve NFP Challenges

Description Use Case for displaying Challenge List View in Game

Actors Player, Game, Challenge

Assumptions Challenges have been added to the system by NFPs

Steps 1. Player clicks on link to display information
2. Game writes form to browser
FOR (Challenge in $ChallengeArray)
3. Game displays Challenge information
END FOR

Extensions Use Case 6.a: Retrieve NFP Challenges (All)
3.a. FOR Challenge in $ChallengeArray
 IF (Challenge.NFP == *)
 …
 END IF
 END FOR

Use Case 6.b: Retrieve NFP Challenges (SpecificNFP)
3.b. FOR Challenge in $ChallengeArray
 IF (Challenge.NFP == SpecificNFP)
 …
 END IF
 END FOR

Use Case 6.c: Retrieve NFP Challenges (SpecificPlayer)
3.c. Game sends query to Database (SELECT taskID FROM
 PlayerChallenges$playerID AND Completed=’0’)
 FOR Challenge in $ChallengeArray
 FOR (TaskID in Player.Challenges)
 …
 END FOR
 END FOR

Use Case 8: Authenticate Challenge

Use Case 8: Authenticate Challenge

Description Use Case for authenticating Challenge with Voucher Code

Actors Player, Game, Database, Voucher Code

Assumptions Use Case 6.c: Retrieve NFP Challenges (SpecificPlayer)

Steps 1. Player enters $VoucherCode in form
2. Player submits form
3. Game sends query to Database
IF (Voucher Code !valid)
4. Game writes error message to browser
ELSE
 IF (Multiple Voucher Codes used)
5. Game sends query to Database (DELETE FROM Task$taskID WHERE

VoucherCode=’$VoucherCode’)
 END IF
6. Game sends query to Database (UPDATE PlayerChallenges$playerID

SET Completed=’1’ WHERE taskID=’$taskID’)
7. Game sends query to Database (UPDATE PlayerChallenges$playerID

SET Completed=’1’ WHERE taskID=’$taskID’)
8. Game sends query to Database (UPDATE Users1 SET MarvelMoney =

MarvelMoney + Challenge.Reward WHERE playerID=’$playerID’)
9. Game writes confirmation message to browser
END IF

Use Case 9: Find Out About NFPs

Use Case 9: Find Out About NFPs

Description Use Case for displaying Specific NFP List information in Game

Actors Player, Game

Assumptions Use Case 10: Display NFP List View

Steps 1. Player clicks on specific NFP from NFP List View
2. Game writes NFP information to browser
3. Game PERFORMS USE CASE 6.B: Retrieve NFP Challenges

(SpecificNFP)

Use Case 10: Display NFP List View

Use Case 10: Display NFP List View

Description Use Case for displaying NFP List View in Game

Actors Player, Game, Database,

Assumptions Use Case 1: Login to Game

Steps 1. Player clicks on link to display NFP List View
2. Game sends query to Database (SELECT * FROM AsCharities)
FOR (NFP returned from AsCharities)
3. Game writes NFP name and link to information
END FOR

Use Case 12: Logout of Game

Use Case 12: Logout of Game

Description Use Case for Player logout of Game

Actors Player, Facebook Site

Assumptions Use Case 1: Login to Game

Steps 1. Player clicks on Facebook logo from Facebook browser chrome
2. Facebook loads main Facebook site

Use Case 13: Load New Challenge

Use Case 13: Load New Challenge

Description Use Case for NFP to add new Challenge to the Database

Actors NFP, NFP Site, Database, Challenge

Assumptions Use Case 12: Login to NFP Site

Steps 1. NFP clicks on link from any page to Add New Challenge
2. NFP Site displays Add New Challenge form
3. NFP completes form
4. NFP submits form
5. NFP Site checks all parts of form complete using JavaScript in the

browser
IF (form incomplete)
6. NFP writes error message to current page using JavaScript in the

browser
ELSE
7. NFP Site sends query to Database (INSERT INTO AsCharityTasks

VALUES(…))
 IF (MultipleVoucherCodes = “1”)
8. NFP Site generates pseudorandom $VoucherCodeStart
9. NFP Site sends query to Database (CREATE TABLE Tasks$taskID..)
 FOR ($i = 0; $i < NumberVoucherCodes; ++$i)
10. NFP Site sends query to Database (INSERT INTO Tasks$taskID

VALUES ($VoucherCodeStart + $i))
 END FOR
 END IF
11. NFP Site redirects NFP to confirmation page
END IF

Use Case 14: Update NFP Information

Use Case 14: Update NFP Information

Description Use Case for NFP to make changes to their organisation information in the
Database

Actors NFP, NFP Site, Database

Assumptions Use Case 12: Login to NFP Site

Steps 1. NFP clicks on link from any page to Edit Information
2. NFP Site displays Edit Information form
3. NFP completes form
4. NFP submits form
5. NFP Site checks if any part of the form contains information
IF (text area != “”)
6. NFP Site sends query to Database (UPDATE AsCharities SET…)
END IF
7. NFP Site redirects NFP to confirmation page

Use Case 15: View Live Challenges

Use Case 15: View Live Challenges

Description Use Case for NFP Site to display Live Challenges for NFP

Actors NFP Site, Database, Challenge

Assumptions Use Case 12: Login to NFP Site

Steps 1. NFP Site sends query to Database (SELECT * FROM AsCharityTasks
WHERE CharityNumber = “$CharityID”)

FOR (NFP returned from AsCharities)
2. NFP Site writes Challenge details to browser
 IF (Challenge.MultipleVouchers = “1”)
3. NFP site writes “View Voucher Codes” link for Challenge
 END IF
END FOR

Use Case 16: View Voucher Codes

Use Case 16: View Voucher Codes

Description Use Case for NFP to view Voucher Codes for an existing Challenge

Actors NFP, NFP Site, Database, Voucher Code

Assumptions Use Case 13: Load New Challenge
Use Case 15: View Live Challenges

Steps 1. NFP clicks on “View Voucher Codes” from Live Challenges List
2. NFP Site redirects NFP to new page in browser
3. NFP Site sends query to Database (SELECT * FROM Tasks$taskID)
4. NFP Site writes COUNT(Voucher Codes) to current page in browser
5. NFP Site writes “Download as CSV file” link to current page in browser
FOR (Voucher Code returned from Tasks$taskID)
6. NFP Site writes Voucher Code to hidden area of current page in

browser
END FOR
IF (NFP clicks “Display Voucher Codes”)
7. NFP Site displays hidden are of Voucher Codes
END IF

Use Case 17: Generate New Voucher Codes

Use Case 17: Use Case Generate New Voucher Codes

Description Use Case for NFP to generate more Voucher Codes for an existing
Challenge

Actors NFP, NFP Site, Database, Challenge, Voucher Code

Assumptions Use Case 12: Login to NFP Site
Use Case 13: Load New Challenge
Use Case 16: View Voucher Codes

Steps 1. NFP clicks link to “Generate More Voucher Codes” from View
Voucher Codes page

2. NFP Site displays form with text box in current page in browser
3. NFP enters number of additional vouchers in text box
4. NFP Site checks form information using JavaScript in browser
IF (ValueEntered is NaN or “”)
5. NFP Site writes error message to current page in browser
ELSE
6. NFP Site generates new pseudorandom Voucher Code start
 FOR ($i = 0; $i < NumberVoucherCodes; ++$i)
7. NFP Site sends query to Database (INSERT INTO Tasks$taskID

VALUES ($VoucherCodeStart + $i))
 END FOR
8. NFP Site reloads View Voucher Codes page with confirmation message

written to browser
END IF

Issues NFP Site must ensure no duplicate codes generated (as relations cannot
contain duplicate rows)

Use Case 18: Download Voucher Codes

Use Case 18: Download Voucher Codes

Description Use Case for NFP to download Voucher Codes for an existing Challenge as
CSV file

Actors NFP, NFP Site, Database, Challenge, Voucher Code

Assumptions Use Case 17: View Voucher Codes

Steps 1. NFP clicks on “Download as CSV file” link from View Voucher Codes
2. NFP Site creates new CSV file entitled voucher_codes.csv
3. NFP Site write row header information to voucher_codes.csv
FOR (Voucher Code returned from Tasks$taskID)
4. NFP Site writes Voucher Code to voucher_codes.csv
END FOR
5. NFP Site asks NFP to confirm next steps with voucher_codes.csv

(dependent on browser)

	Table of Contents
	Chapter 1: Introduction
	1.1 Why Tackle This Problem?
	1.2 The Approach
	1.3 Assumed Knowledge
	1.4 Terminology
	1.5 Roadmap Of Remaining Chapters

	Chapter 2: Background
	2.1 Not-For-Profit Organisations And Online Gaming
	2.2 The Facebook Platform
	2.3 The Client-Server Model And Facebook Apps
	2.4 Authentication Of Challenges By AmazingStoke Players

	Chapter 3: System Analysis and Design
	3.1 System Requirements
	3.1.1 High-Level Goals
	3.1.2 Requirements From Research Questionnaire
	3.1.3 FURPS Requirements Specification
	3.1.4 Use Case Models

	3.2 System Design
	3.2.1 Identifying Conceptual Classes
	3.2.2 Domain Model
	3.2.3 Model, View, Controller
	3.2.4 Identifying Different Views
	3.2.5 Identifying Core Functionality
	3.2.6 Graphics

	3.3 NFP Site Design
	3.3.1 Use Of A Database
	3.3.2 Use Of Sessions In NFP Site
	3.3.3 Adding A Challenge
	3.3.4 Design Class Diagram (NFP Site)

	3.4 Game Design
	3.4.1 Use of Sessions In Game
	3.4.2 Logging In To Game
	3.4.3 Buying Buildings
	3.4.4 Authenticating A Challenge
	3.4.5 Viewing Charity Information & Viewing Tasks
	3.4.6 Design Class Diagram (Game)

	3.5 Database Design

	Chapter 4: Implementation
	4.1 Technologies
	4.1.1 Database: SQL / MySQL Database
	4.1.2 PHP
	4.1.3 JavaScript
	4.1.4 WAMP Development Stack
	4.1.5 Facebook API
	4.1.6 Hosting

	4.2 First Iteration Of The System
	4.2.1 First Iteration Of The MySQL Database
	4.2.2 First Iteration Of NFP Site
	4.2.2.1 Key Functionality
	4.2.2.2 NFP Login Page With PHP And MySQL
	4.2.2.3 View Challenges Page
	4.2.2.4 Add Challenge Form
	4.2.2.5 Update Details Form
	4.2.2.6 View Voucher Codes
	4.2.2.7 Logout

	4.2.3 First Iteration of Game
	4.2.3.1 Key Functionality
	4.2.3.2 Basic Facebook API
	4.2.3.3 Loading of the Game
	4.2.3.4 Buying A Building
	4.2.3.5 Viewing And Accepting New Challenges
	4.2.3.6 Authenticating Challenges
	4.2.3.7 NFP Information

	4.3 Second Iteration Of The System
	4.3.1 Second Iteration Of NFP Site
	4.3.1.2 Add Challenge Form
	4.3.1.3 View Voucher Codes
	4.3.1.4 Generate More Voucher Codes
	4.3.1.5 Cascading Style Sheets

	4.3.2 Second Iteration Of Game
	4.3.2.1 Updating Player’s MarvelMoney On Login
	4.3.2.2 JavaScript And CSS To Display Map / Buy Buildings Form Within The Browser
	4.3.2.3 Rewriting Map Using JavaScript And Ajax
	4.3.2.4 Cascading Style Sheets

	4.4 Third Iteration Of The System

	Chapter 5: Demonstration
	5.1 NFP Site
	5.1.1 Login
	5.1.2 Update Details
	5.1.3 Add A Challenge
	5.1.4 View Voucher Codes
	5.1.5 Generate More Voucher Codes
	5.1.6 Logout

	5.2 Game
	5.2.1 Create Account Via Facebook
	5.2.2 Log Back In Via Facebook
	5.2.3 Buy A Building
	5.2.4 View And Accept A New Challenge
	5.2.5 View NFP Information
	5.2.6 Authenticate A Challenge
	5.2.7 Update A Player’s MarvelMoney On Login

	Chapter 6: Areas For Exploration
	6.1 Development Technologies
	6.2 System Functionality
	6.3 Further Developments

	Chapter 7: Conclusions
	References
	Appendix A: Use Cases

