

MotionJS
A JavaScript Framework for large applications

A dissertation submitted in partial fulfilment of the requirements
for the MSc in Information and Web Technologies

by Michael Sauter

Department of Computer Science and Information Systems
Birkbeck College, University of London

May 2011

 ii

Academic Declaration

This report is substantially the result of my own work except where explicitly indicated in
the text. I give my permission for it to be submitted to the JISC Plagiarism Detection
Service. I have read and understood the sections on plagiarism in the Programme booklet
and the School’s website.

The report may be freely copied and distributed provided the source is explicitly
acknowledged.

London, XXth May 2011

Michael Sauter

 iii

Table of Contents

Abstract ... iv	

1	
 Introduction .. 1	

2	
 Background .. 3	

2.1	
 JavaScript Language Features ... 3	

2.1.1	
 Dynamicity ... 3	

2.1.2	
 Objects and Inhertiance ... 3	

2.1.3	
 Execution Context and Function Invocation .. 4	

2.1.4	
 Closures... 4	

2.2	
 Server-side JavaScript ... 5	

2.3	
 Dependency Injection .. 5	

3	
 Analysis... 7	

3.1	
 PHP and Python ... 7	

3.1.1	
 Modules and Namespaces... 8	

3.1.2	
 Classes... 8	

3.1.3	
 Access Modifiers.. 8	

3.1.4	
 Interfaces... 9	

3.1.5	
 Inheritance .. 9	

3.2	
 Yahoo! User Interface Library 3 (YUI3) .. 10	

3.3	
 Joose .. 11	

3.4	
 Requirements ... 13	

4	
 Design ... 15	

4.1	
 Architecture ... 15	

4.2	
 Module Loading .. 15	

4.3	
 Module Content... 17	

4.4	
 Object Configuration... 17	

4.4.1	
 Dependencies... 17	

4.4.2	
 Inherits .. 17	

4.4.3	
 Requirements .. 18	

4.5	
 Object Creation ... 19	

4.6	
 Object Management .. 19	

5	
 Implementation... 20	

5.1	
 Architecture ... 20	

5.2	
 Object creation .. 20	

5.3	
 Module Loading and Development Server ... 24	

5.4	
 Build System and Deploying ... 28	

6	
 Evaluation .. 29	

7	
 Conclusion .. 37	

References ... 39	

8	
 Literaturverzeichnis .. 39	

 iv

Abstract

Dorem ipsum dolor sit amet,consectetuer adipiscing elit,sed diam nonummy nibh euismod
tinet unt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam,
qui nostrud exercitation ullamcorper suscipit lobortis nisl utaliquip ex ea commod con. Duis
autem vel eum iriure dolor in hendrerit in vulputate velit essent molestie quat,vel illum
dolore eu feugiat nulla facilisis at vero eros et accumsan et iustos odio dignissim qui blandit
praesent luptatum zzril delenit augue duis dolore te feug ait nulla facilisi. Lorem ipsum
dolor sit amet, consectetuer adipiscing elit, sed di am nonummy nibh euismod tincidunt ut
laoreet dolore magna aliquam erat volutpat. Uti wisi enim ad minim veniam,quis nostrud
exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis
autem vel eum iriure dolor in hendrerit init. Dorem ipsum dolor sit amet,consectetuer
adipiscing elit, sed diam nonummy nibh euismod tinet unt ut laoreet dolore magna aliquam
erat volutpat.

 1

1 Introduction

The JavaScript programming language was designed in 1995 to allow non-developers to
add behaviour to websites [1]. Since then, it became more and more widely used, to the
point where the vast majority of the most popular sites use JavaScript [2]. Especially in
recent years, there has been an increased interest in the language as some websites turn
into JavaScript-powered applications (e.g. Google Docs1). This lead to increased
performance in browsers and renewed research efforts, investigating in areas such as
security and correctness [2]. Next to its usage in browsers, JavaScript also plays an
important role in the mobile space, as it can be executed on all systems (through browsers),
or even being the main development language as in webOS [3]. Another area where
JavaScript is getting to be used is in server-side environments [2]. New platforms like
NodeJS2 or Rhino3 have attracted developers in recent years.

As a consequence thereof, JavaScript programs have been used by developers for more
ambitious projects, pushing the language to its limits. The general assumption that
JavaScript programs are little scripts used for DOM manipulation does not hold anymore
[2]. This development exhibits the shortcomings of the language, which are more obvious in
large systems that are composed of many scripts, containing a large amount of objects.
One such lacking feature is the ability to import scripts, which are taken for granted in
server-side scripting languages like PHP or Python. Other problematic aspects of the
language in the sight of large systems are the missing support for encapsulation or the
weak type system (see chapter 2 for details). Despite these shortcomings, developers have
not abandoned JavaScript, as it is the only language natively supported in all major
browsers [4]. Instead, it was tried to overcome the problems. Broadly speaking, three
approaches can be distinguished:

1. Writing code in other languages and translating it to JavaScript
2. Extending JavaScript and compiling to pure JavaScript (e.g. Objective-J4)
3. Using JavaScript’s dynamic features to write JavaScript frameworks that provide

missing features and/or ease development

While the first two approaches have been popular, they need additional steps in the
development process and may miss the features that only JavaScript has to offer (e.g. the
prototypal inheritance, more on this in chapter 2). The third approach has been quite
popular as well, leading to a myriad of JavaScript frameworks, some of which will be
discussed later on in chapter 3. Some of these frameworks try to make JavaScript more like
some other language (e.g. Java) providing class-based inheritance etc, while others believe
that JavaScript’s concepts are not inferior to other languages, but only miss some features,
which are then tried to be added.

1 http://docs.google.com/
2 http://nodejs.org
3 http://www.mozilla.org/rhino/
4 http://cappuccino.org/learn/tutorials/objective-j-tutorial.php

 2

Most of the frameworks developed so far offer help in building interfaces (e.g. by easing
DOM manipulation), as client-side JavaScript is (still) the dominant usage. Very few
frameworks have tackled the problem that arise on the server-side and especially in larger
systems. Throughout this work, we use the terms “large systems” or “large software” in the
meaning of software that is composed of many scripts which likely make use of a big
number of objects, not necessarily of software that is written by many developers or used
by many people. Typically though, large systems consist of many components, that might
not have been specifically written for a single project, but might be reused from previous
projects, possibly from different authors. These systems put demands on a framework that
differ from the current offerings: The organisation of code becomes very important,
dependencies between scripts (and objects) have to be managed and maintainability is one
of the biggest concerns.

The framework developed during this project aims to aid the developer in the development
of systems with these requirements. The goal is to create a framework (which we’ll call
MotionJS) which provides features missing in JavaScript to efficiently support code
organisation and reuse, and add features necessary for developing large systems, such as
dependency injection. As these additions are helpful both client and server-side, MotionJS
should run without modification in both environments (more on this in chapter 4).

In the following, we’re going to describe the development of the framework, beginning from
its analysis and design process through to its realisation and the evaluation of the results.
Chapter 2 starts with a short introduction to JavaScript’s main features and server-side
capabilities necessary to understand the implementation details later on. Chapter 3 lays the
foundation for the design by analysing the scripting languages PHP and Python and
identifying features available there but missing in JavaScript. Furthermore, it presents two
JavaScript frameworks to elaborate what these provide in order to help developers write
large-scale applications. Based on this analysis, requirements for the frameworks are
distilled, which lead to the proposed design for our framework in chapter 4. Following that,
chapter 5 describes the implementation of this design, before we evaluate the developed
framework in chapter 6 by demonstrating its features and comparing it to the existing
solutions. In the final chapter, conclusions from the project are drawn and possible future
work is indicated.

 3

2 Background

This chapter will start with a look at JavaScript language features that underpin the
envisioned framework and are therefore essential to understand the implementation detailed
in chapter 5. It is however not intended to be a complete list of all JavaScript language
features. Secondly, the basics of JavaScript on the server are explained as this is a fairly
recent development and cannot be considered common knowledge. Finally, a general
outline of Dependency Injection – and reasons why it will play such an important role in
the design process – are given.

2.1 JavaScript Language Features
The features described in this section refer to the ECMAScript 3 Language specification [5],
finalized in December 1999. ECMAScript 5 [6] (version 4 was skipped) has been passed in
2009 and provides several enhancements to the language, but due to the lack of support in
some major browsers, it was not considered for the development of the framework and
therefore this report only deals with ECMAScript 3.

2.1.1 Dynamicity
JavaScript, as a scripting langauge, is dynamic, which means that types are determined at
runtime. Moreover, JavaScript is also a weakly typed language: variables may change
their type during runtime and implicit coercion may occur [1, chapter 9]. Objects can be
changed after their creation: properties can be added, modified and deleted. This offers
great flexibility and is especially helpful for writing frameworks (like the one proposed in
this report) that want to improve the object model of JavaScript.

2.1.2 Objects and Inhertiance
In JavaScript, objects can be created with the object literal or via a constructor and the
new keyword, as can be seen in code listing 1:

Code listing 1: Objects in JavaScript

There are no classes in JavaScript and inheritance is achieved through the use of
prototypes. Every object has a hidden prototype property containing the so-called
prototype chain (a chain of objects the object “inherits” from). When a property of an
object is accessed which is not defined on the object, it looks up its prototype chain to
check if one of the inherited objects define the property. All objects in JavaScript implicitly
inherit from the Object object, that is, the hidden prototype property is set to Object. This
can be changed to any other object by setting the prototype property of a function, as
illustrated in code listing 2.

 4

Code listing 2: Inheritance in JavaScript

It is important to take note of the fact that every object created with new B() will now
share the same prototype (object a).

2.1.3 Execution Context and Function Invocation
In JavaScript, there are three execution contexts: global code, eval code and function code
[1, chapter 10]. Before any execution context is entered, a unique global object is created
(containing built-in objects and host defined properties). When control enters an execution
context, a this variable is assigned and its value is determined. In global code, this always
refers to the global object, in eval code this always refers to the calling context and in
function code it is either the caller object or, if that is not an object, the global object. As
JavaScript allows to invoke functions on any object (therefore, functions are not bound to
an object), the this variable inside function code will refer to the object on which the
function is invoked. To invoke functions on a specific object, JavaScript provides two
utility methods on Object, call() and apply(). Both take the object which this in the
function code will reference as their first argument. Additionally, call() takes an arbitrary
number of arguments, whereas apply() expects only one more argument: an array which
will be applied to the function as arguments. The following code listing 3 illustrates how
the value of this depends on the caller.

Code listing 3: Function invocation

2.1.4 Closures
Closures are functions that remember the context in which they were created. As seen in
the previous section, every function code creates its own execution context. Inside a
function, variables in the outer scope can be accessed, even when the function is used in a
different context. Code listing 4 shows an example of this.

Code listing 4: Closure

However, there is no possibility to access the variable foo directly from the global context.

 5

2.2 Server-side JavaScript
JavaScript has been mainly used as a client-side scripting language with a web browser as
the host environment. However, the language is not limited to a web browser and can be
used on the server-side as well. Since 2008 / 2009, there has been a lot of movement in
this area which has been accompanied by standardisation efforts like CommonJS [7].
CommonJS is motivated by the lack of a standard library in the official JavaScript
specification “that is useful for building a broader range of applications. [It tries to achieve
this] by defining APIs that handle many common application needs, ultimately providing a
standard library as rich as those of Python, Ruby and Java” [3]. Programs written using
the CommonJS API are supposed to run in different host environments. One of them
gaining a lot of interest lately is NodeJS5. It is a server-side platform built on Google’s V8
engine6 and offers asynchronous I/O, event loop concurrency and support for CommonJS’s
module system [8]. Such a module is shown in the following code listing 5.

Code listing 5: CommonJS module

With NodeJS, CommonJS modules can be used inside other files as shown in code listing 6.

Code listing 6: CommonJS module usage

The to-be-developed framework will use NodeJS as its server-side platform due to NodeJS’s
popularity and ease of use, but should run with minor or no modifications on other server-
side environments (e.g. narwhal7).

2.3 Dependency Injection
Dependency Injection (coined by Martin Fowler [9]) is a pattern to achieve Inversion of
Control in software. The goal of Inversion of Control is to move control away from the
objects themselves to a container or framework “around” them. Dependency Injection
strives to handle the dependencies of objects from the outside. Therefore, objects do not
build their dependencies but rather get those dependencies injected by the enclosing
framework [5]. The following code listing 7 is a simple example of Dependency Injection
without a container.

5 http://www.nodejs.org
6 http://code.google.com/p/v8/
7 http://narwhaljs.org/

 6

Code listing 7: Dependency Injection

Within a container, the creation of an instance of House would automatically create and
inject an instance of Door so that the developer does not have to create all the
dependencies manually. The wiring is usually done in a configuration file.

The Dependency Injection pattern enables objects to be more loosely coupled
(implementation can be easily exchanged), which is especially important in larger
applications. Furthermore, it eases testing of the objects that get their dependencies injected
[10]. Because they do not build the dependencies inside their code, in testing those
dependencies can be mocked and set on the object from the outside. However, this is of less
importance in JavaScript because properties usually can be accessed from the outside the
object and modified anytime. Therefore, it has been questioned whether Dependency
Injection is needed in dynamic languages in general and in JavaScript in particular. These
objections miss the fact that Dependency Injection offers the possibility to exchange the
implementation (or simply the object in languages without interfaces) by changing the
configuration (which specifies all the dependencies) without modifying the source code itself.
This is crucial because it cannot be assumed that all source code is owned or that it is
desirable to modify source code provided by a third party (this would make updates more
complicated). Secondly, and this is specific to JavaScript, Dependency Injection can help
with the “composition” of the software. JavaScript does not provide a module system or
any other way to import code from other source files. Because of this, many frameworks
provide additional tools to combine (all) source files into one file which can be executed.
Having a configuration file which states the dependencies between objects helps such tools
to decide exactly which files are needed when one object is requested. The details of this
technique are explained in chapter 4 of this report, but it should be noted here that
Dependency Injection enables smart loading of resources, saving bandwidth which is very
important in the browser environment in which JavaScript is currently primarily used.
Therefore, the principles of the Dependency Injection pattern play a major role in the
proposed framework.

 7

3 Analysis

As stated in the introduction, the goal of the framework is to provide missing language
features of JavaScript and to help programmers write systems that are composed of many
different components. This chapter will analyse which features are needed to achieve this,
beginning with a review of other scripting languages. Languages that need to be compiled
(like Java) are not considered in this review as they are not directly competing with
JavaScript8. The languages chosen for the analysis are PHP and Python, because they are
the two most popular languages in the script category9 according to the March 2011
results of the Language Popularity Index tool [11]. Besides being popular, PHP is also a
good choice due to its use in many big projects on the web (e.g. facebook.com [12] or
digg.com [13]). Python also is especially interesting in the context of this report due to its
similarity to JavaScript (e.g. with respect to encapsulation, interfaces, modules etc.).

Furthermore, we must investigate what existing JavaScript frameworks provide to foster
development of large applications. We will consider two frameworks which are chosen as
representatives of their specific approach. For each of them, we will list the main features
and explain why they are not sufficient to achieve the goal outlined in the introduction.

Finally, the requirements for the design, which is detailed in the next chapter, will be
drawn from the analysis we have carried out.

3.1 PHP and Python
There are many ways to compare programming languages with each other – e.g. features,
syntax, built-in types, libraries or tool support just to name a few. In this section, we’ll
focus on the features, because this is the part of the language we’re aiming to improve. As
noted in chapter 2, JavaScript’s dynamic nature and flexibility allows us to easily
introduce new features by writing a framework, whereas other characteristics of the
language cannot be changed by the user, like the syntax10. The main features we consider
are those concerning the organization of code and the object model of the language in
particular. These greatly determine how suited a language is to develop large applications:
The bigger the code base grows, the more important it is to organize the code and to
maximize reusability and minimize code duplication. In the following section, we will
compare how PHP (in version 5.3) and Python (in version 3.2) approach these aspects in
contrast to JavaScript.

8 To a certain extent, JavaScript can even be considered to be a totally unique language because it is the only
scripting language running natively in every major browser.
9 Depending on the metrics used, results vary. Other language popularity measurements such as LangPop.com
or the TIOBE Software Index have slightly different results [INSERT CITATION MANUALLY].
10 That being said, JavaScript’s syntax has optional features, e.g. the semicolon to mark the end of each line is
not required, see [CITE ECMA STANDARD HERE, chapter 7.9].

 8

3.1.1 Modules and Namespaces
PHP offers namespaces in order to group related classes, functions and constants [14]. This
logical grouping prevents class name clashes and does not require a specific physical
structure of the files involved. PHP does not provide a module system, but the language is
able to include other (PHP) files into the program [15] and to autoload classes at runtime
[16]. Python however offers a module system [17]. The filename of the module equals the
name of the module, by which it can be imported by other scripts. Modules and classes
form natural namespaces. JavaScript supports no modules like Python and no namespaces
like PHP and therefore no importing of source code into another script. There is however
the CommonJS standardization effort mentioned in chapter 2 which defines a module
functionality for the server side [18], e.g. implemented by NodeJS. As JavaScript is already
becoming more like Python in this area, our framework will organize the source code in the
CommonJS module standard and bring this functionality to the client side as well.

3.1.2 Classes
The object model of both PHP and Python is centred around classes. A class represents a
type in the program and consists of properties, which can be either variables or functions.
Classes are instantiated with the new keyword (which calls a constructor function of the
class). The created object is of the type of the class and therefore also consists of the
variables and functions defined in the class [19]. Furthermore, classes might define
properties – called static properties in PHP and attribute references in Python – belonging
to the class itself (instead of to the object). These properties are shared between all objects
of the same type and can be accessed via the class name. JavaScript however does not
have classes at all. Instead, it is part of the prototype family of object-oriented languages
that use cloning to facilitate creation of new objects. It is possible though to introduce a
type by defining a function. This function (which itself is an object) can create a new
object from itself when it is called with the new keyword [20]. Hence, the function acts as
both the constructor and the type of the object.

Many JavaScript frameworks try to make JavaScript more class-like by introducing class
constructs etc (e.g. Joose11, which is described in the next section). It is being questioned
though if the class approach offers significant advantages over the JavaScript object model
and especially if trying to change the language to be more like some other language results
in a better solution [21] [22]. Our framework will follow the object-only approach of
JavaScript, as the great flexibility that comes with this choice can be very helpful for
developers.

3.1.3 Access Modifiers
PHP offers access modifiers for the properties of a class. Properties can be public (accessible
to everyone), private (accessible only within the class) or protected (accessible within the
class and also from any subclass) [23]. This approach ensures encapsulation: Developers are
able to control who can change properties so that the state of an object cannot be
corrupted from the outside. Python however, like JavaScript, does not offer access modifiers

11 http://code.google.com/p/joose-js/

 9

at all. Instead, Python developers follow a convention to mark variables as private by the
use on an underscore prefix [24]. To be precise, the underscore signals that developers
should not use them from the outside, but objects inside (in Python, that is in the module)
can access them like they were public. The reason for not having access modifiers is that a
convention is believed to provide enough guidance for a developer which members to use
and which to avoid, but still leaves the opportunity to access them if absolutely needed.
While this might seem rather fragile for programmers coming from very strict languages, it
seems to work well in practise. Furthermore, it is helpful in unit testing, because members
can easily be mocked. For the to-be-developed framework, we decided to stay with the
current approach to not have access modifiers but adopt the underscore convention of
Python12.

3.1.4 Interfaces
While PHP provides the possibility to define interfaces for classes [25], Python does not. An
interface specifies the public methods of a class (the API of that class). Interfaces also act
as types, so objects of different classes might all have same type if their classes all
implement the same interface. The advantage of interfaces is that they enable developers to
program against interfaces and not specific classes. Then, the implementation of the
interface (the specific class) can be changed without breaking consumer code. JavaScript
does not offer interfaces, which is also due to its dynamic nature: A certain interface cannot
be guaranteed as the object might have been altered between its creation and its usage.
Objects always have to be asked what they can and cannot do (this behaviour is called
duck-typing). That being said, it is till desirable to program against some abstract concept
of something rather than its actual implementation.

3.1.5 Inheritance
Both PHP and Python allow inheritance of classes. The subclass is a subtype of the
superclass and therefore may be used instead of an object of the superclass (this is called
subtype polymorphism) [26]. The subclass has the possibility to override methods of the
superclass. PHP allows only single inheritance [27], whereas Python allows multiple
inheritance as well [28]. JavaScript however features prototypal inheritance, as explained in
chapter 2. In PHP, overriding methods can access the method defined in the superclass via
the super keyword. Python also enables developers to access inherited methods that have
been overridden by providing a super function (delegating method calls to a parent or
sibling class [29]). This additional level of control is needed for multiple inheritance because
it might not be unambiguous which parents’ method to use. The following figure 1
demonstrates this problem (known as the diamond problem):

12 However, it is possible in JavaScript to have private variables via closures, see [INSERT CROCKFORD
CITATION HERE]. Also, protected variables can be emulated by passing private variables from inherited types
to a function. This technique is described in a German article on the technology magazine heise.de [INSERT
HEISE CITATION HERE].

 10

Figure 1: Diamond problem

Python allows to specifically call the getQualifications() of Student or of Teacher. By means
of this super function it is also possible to re-use methods further up in the hierarchy, not
only those in the immediate parent(s), e.g. if Person would define a getQualifications()
method as well. As multiple inheritance increases the reusability of code, our framework
tries to implement this feature. A similar approach to Python is taken, adding a function to
access overridden methods (which is not possible in standard prototypal inheritance). We
will also adopt Python’s default strategy to inherit properties: The parent classes are
searched in the order they are given, “depth-first, left-to-right, not searching twice in the
same class where there is an overlap in the hierarchy” [INSERT PYTHON CLASS
CITATION HERE].

As a result of the language comparison, we saw that support for modularisation of code,
multiple inheritance and some form of interfaces would be beneficial for developers of large
applications. Those three requirements will be included in the requirements list at the end
of this chapter.

3.2 Yahoo! User Interface Library 3 (YUI3)
Although named “User Interface Library”, this library is very interesting for JavaScript
developers trying to write large applications as it offers many features related to the object
model and the organization of code. YUI3 was designed for the client-side and is in use on
many websites with a lot of JavaScript code, e.g. the Yahoo! Homepage and LinkedIn [30].
The core of the is framework the YUI global object, which mainly offers loading and
dependency functionality for other components. When a component is used, it and all its
dependencies will be fetched by the YUI global object in a single HTTP request before the
dependent code is executed [31]. YUI3 also helps composing objects by providing several
helper functions like extend, augment and mix. These allow the developer to build the
notion of class hierarchies, and to dynamically add functionality to objects after their
creation. To provide this, YUI3 makes extensive use of the prototypal nature of
JavaScript. In the following code listing 8, it is illustrated how to create a two and a three
dimensional point (Point and Point3D) with YUI3, using type hierarchy:

 11

Code listing 8: Point and Point3D in YUI3 (with type hierarchy)

Alternatively, one could achieve the same functionality without type hierarchy by simply
augmenting Point, as illustrated in code listing 9.

Code listing 9: Point and Point3D in YUI3 (without type hierarchy)

When we compare YUI3 with the goal set for our framework in the introduction, we notice
some shortcomings however. Firstly, it does not work out of the box on the server. By
default, the loading functionality only works in an asynchronous environment, loading
scripts via HTTP. It is possible to replace the loader though and have the framework run
on the server as well [32]. Furthermore, dependencies cannot be configured from the
outside, which makes it hard to exchange their implementation effortlessly. Also, the
dependency system is not a real dependency injection system but simply tries to bring
modules (and import thereof) to the client. Finally, while the bundling of components
together to be served in a single HTTP request is a desirable feature for performance
reasons, it only works if the files are being served from Yahoo!’s content delivery network
(CDN) [33]. Ideally, our framework would not rely on extra infrastructure.

3.3 Joose
Joose is a meta object system for JavaScript. It uses JavaScript’s object literals do describe
constructs like classes and to add features like inheritance, mixins and method modifiers
[34]. Joose provides these features by helper functions that sit in the global namespace like

 12

Class, Module, Role or Prototype. Into each of these helpers, one passes in an object literal
that will be turned into the real representation (e.g. in the case of Class, it will assemble a
function in the global namespace which can act as the constructor for an object). A simple
example that defines a two dimensional point (Point) and a three dimensional point
(Point3D) inheriting from Point is shown in code listing 10 below.

Code listing 10: Point and Point3D in Joose

The object with the key has defines the properties of a class, isa specifies the supertype.
Methods can be laid out in methods, and later modified e.g. with the after keyword. Joose
transfers these meta descriptions and creates a function Point and Point3D in the global
namespace.

Generally, it could be said that Joose’s approach is to make JavaScript more like a class-
based language. Other frameworks with similar feature sets are for example Qooxdoo13 or
the Dojo toolkit14. Out of the box, Joose cannot be used on the server side and does not
provide any form of dependency management, but there are CommonJS modules available
to add support for both15. These modules need to be imported into every script that wants
to use these features. In our tests, these did not work though, as the dependencies between
modules were not resolved. This seemed to be a configuration problem, but the
documentation was sparse and the error messages did not point to the problem. Even if the
dependency management would work flawlessly, the approach taken to load dependencies
asynchronously is quite simplistic and inefficient compared to YUI3’s approach, because the

13 http://qooxdoo.org/
14 http://dojotoolkit.org/
15 There is a module for NodeJS:
http://openjsan.org/doc/s/sa/samuraijack/Task/Joose/NodeJS/0.07/lib/Task/Joose/NodeJS.html and one
to add dependency management between modules:
http://openjsan.org/doc/s/sa/samuraijack/JooseX/Namespace/Depended/0.10/lib/JooseX/Namespace/De
pended.html.

 13

extension needs as many HTTP requests as there are dependencies16. When judging Joose’s
feature set, it lacks dependency injection and out-of-the-box server side compatibility.

From our evaluation of JavaScript based frameworks it is clear that there is no framework
which is built from the start for both client- and server side currently available; and no
framework that truly uses dependency injection. Additionally, every of the available
options misses some of the goals we intend to achieve. That being said, we gained valuable
insight into which features might be useful for our framework, which we’ll present in the
next section.

3.4 Requirements
To summarise the analysis carried out so far, the goals of our framework are as follows:

1. Testability
Although not mentioned in the analysis above, testability is a must-have for large
applications: As the code base grows, it becomes more and more important to run
repeatable tests to ensure the functionality works as expected and that changes
made to one part of the application do not negatively affect other parts of the
application. Furthermore, in the context of dynamic languages, tests can help to
spot errors that would otherwise be detected by a compiler [35].

2. Modularity
The source code must be organized in small chunks (to increase maintainability)
which then can be composed by the framework as needed. The chosen format is the
CommonJS module system, which can be used on the server side without
modification.

3. Multiple Inheritance
To maximize reusability, objects should be able to inherit from more than one
parent. The solution must provide a way to deal with the diamond problem and
offer a convenient way to access overridden methods.

4. Dependency Injection
Objects that depend on other objects should not resolve those dependencies on their
own, but rely on the framework to inject them. As a side-effect, Dependency
Injection should provide a way to exchange the implementation which is injected.
This exchange should be possible without touching the consuming code so that the
framework gains some of the features interfaces provide and enables developers to
program against abstractions, not implementations.

5. Server-side and client-side compatibility
The code should work with no modification by the developer in both environments.
This will affect the design of our module system: On the client, code needs to be

16 However, there has been a discussion in May 2009 to improve this situation, see
http://www.sencha.com/forum/showthread.php?69161-Grouped-dependencies-loading-suitable-for-production.

 14

loaded asynchronously and dependent code must not be executed before all
dependencies are resolved.

6. Minimum overhead in production context
On the client, dependencies should be served in a single request, and no special
server should be needed. Furthermore, if the framework is used on the server, no
code concerning only client side issues should be loaded (and vice versa).

With those requirements in place, the next chapter will develop the design for the
framework.

 15

4 Design

The design of the framework will adhere to the requirements specified in the previous
chapter. Therefore, this chapter will not only give a broad overview of the design, but will
also address how each requirement is met by the concept.

4.1 Architecture
Code written based upon the framework will be organised in so-called bundles. A bundle
provides a coherent piece of functionality, which is mainly provided by JavaScript modules,
which are accessible by their identifiers (their name, determined by the physical structure).
Furthermore, a bundle may contain tests and provide static assets like HTML files, images,
etc.

Next to the bundles directory, the framework will have a web directory, which should be
the only directory accessible from the client side (more on how the loading works will be
explained in the next chapter) and a global configuration file to control how the bundles
and identifiers work together. The basic file structure therefore looks like the following:

build/
bundles/
web/
configuration.js

4.2 Module Loading
One requirement is that the framework should work equally well on both server and client
side. This affects the way we organize our code. As already stated, we would like to write
normal CommonJS modules that look like those explained in chapter 2. However we
cannot directly use those modules on the client, because they are designed for an
synchronous environment. If a module is imported in a synchronous environment, the
execution stops until the code has loaded. On an asynchronous host however, execution
does not stop. Therefore, we need to wrap the dependent code in a function and call this
function once the modules have finished loading (usually via HTTP). This difference in
coding results in the incompatibility of server and client side modules. Our framework will
have to unify this in order to use the same modules both sides without code modification,
but first we need to determine how we are going to load scripts in an asynchronous
environment.

The website of the simple module loader RequireJS17 gives a good overview of which
methods are available to load scripts on the client [36]. The seemingly best approach is to
create new script tags on demand and add them to the HTML head tag, which will cause
the script to load asynchronously. Once it is loaded, we can call our dependent code. The
easiest way to detect load completion would be to listen for the onload event of the script
tag, but unfortunately this event is handled very differently across browsers. An alternative

17 http://requirejs.org/

 16

method working in all browsers is to call a function at the end of every script to be loaded
[37]. When this function is executed, we know that loading is done. The main disadvantage
of this method is that you have to control the content of the JavaScript file you want to
load. In our framework we do have that, so we will use this approach to script loading.

With that in place, we have to investigate how we can use the exact same code for both
server and client side, as we saw that we need to wrap dependent code on the client and
need to call a function after each loading (which we do not need on the server). Also, on
the client we would like to combine all files into one HTTP response (similar to YUI3).
The architecture of our framework to achieve this is shown in figure 2.

Figure 2: Loading Architecture

The architecture is based on the idea that there are two contexts in which the frameworks
may run: development and production. In development context (left hand side in figure 2),
changes to the code happen very often and we want the framework to automatically adapt
to them. In production (right hand side in figure 2) however, performance is the highest
priority and changes do not happen as frequently. Therefore, we will have a development
server (using NodeJS) running in development context, dynamically creating the responses.
When a client requests a module (step 1), the server loads the required modules and finds
their dependencies by executing the code (this is possible because the server itself is written
in JavaScript). When all dependencies for the request are determined, the server will
dynamically generate a single HTTP response by reading the module files, wrapping the
code in functions and adding a function call at the end to signal that loading is done (step
2). This response is then send back to the client (step 3), but also stored for later use by
the build system. The build system can generate static JavaScript files for each response
(reusing the functionality of the development server) recorded in the development context.
These static files are then used in production context, in which we do not want to rely on
an additional NodeJS server. Therefore, if a client requests a module in production context
(step 1), that request directly accesses one of the static files (step 2).

This approach also ensures a great level of security: Some parts of the application might be
only suitable for use on the server side (e.g. database access with passwords) and should
never be accessible though the web server. With our approach, only those modules
requested from the client by the developer in development context will be made available
to the web server in production context.

 17

4.3 Module Content
In the previous section, we defined how modules will be written and how they are going to
be loaded, but we did not define what content they will have. In our framework, each
module represents an object, which is referred to by its identifier. It is possible to re-
configure which module will be used for a particular identifier in a global configuration file.
This enables developers to exchange the implementation easily, but it does not guarantee
that the substituting object is actually a valid replacement (like an interface would).
Unfortunately, JavaScript dynamic nature makes it impossible to achieve this.
The module content is made out of two parts: an object definition and an object
configuration. See code listing 11 for an example.

Code listing 11: Module content describing a car

In the definition, the properties – variables and functions – of the object are defined. If the
definition contains an init method, the object is instantiable later on through the
framework, if not, the definition is like an abstract class. The configuration is responsible
for specifying the objects dependencies, the identifiers it inherits and variable requirements
that need to be met, which will be explained in more detail in the following section.

4.4 Object Configuration

4.4.1 Dependencies
As noted earlier, we want to use dependency injection in our framework. In the
dependencies part of the configuration, developers can note which dependency the object
described in the definition has (and which variable should reference this dependency). The
dependency will be loaded by the framework and injected into the specified variable
immediately after the object is created.

4.4.2 Inherits
As noted in chapter 3, we want to support multiple inheritance and use a similar approach
to Python. When multiple identifiers are inherited, the properties of the identifiers are
searched depth-first, from left to right. Therefore, the most left identifiers possible override
properties defined in identifiers to their right. While the idea is very similar to Python, the
implementation is completely different. Remembering JavaScript’s prototypal nature, we
could merge the functions of the inherited identifiers into one object and set that as the
prototype of object to be created. The variables of the inherited objects would need to be
collected and added to the created object as well. Figure 3 shows this setup.

 18

Figure 3: Object Inheritance, first approach

Unfortunately, this does not allow us to access functions that have been overridden. As this
is crucial for the provision of multiple inheritance though, we need to further refine the
concept. In chapter 2 we saw that JavaScript functions are not bound to objects but can
be invoked on any object. Therefore, we can extract all functions from the object definition
in a module and store them in an ability object. For each identifier, there is exactly one
such object in the framework. The function calls any object in the framework then need to
be delegated to that ability object. We accomplish this by adding function wrappers to the
object and invoking the ability function on our current object. This approach allows us to
access (by means of a helper function) functions of specific abilities so that using overridden
methods is possible. One final improvement is to share the wrapper functions in the
prototype for each object, as they are the same for all objects of one type. This design is
illustrated in figure 4.

Figure 4: Object inheritance, second approach

By using this approach we reduce memory usage by sharing common functions, and
introduce a very powerful multiple inheritance mechanism.

4.4.3 Requirements
An object configuration can specify required properties. For example, the identifier might
need a certain property to exist for its functions to work. When an object is created, it is
checked whether all the requirements of the identifier of the created object are met. This is
helpful for example, if an identifier wants to delegate the creation of a dependency to the
inheriting object.

 19

4.5 Object Creation
The object concept described above forces us to create objects only through the framework.
The basic mechanism of object creation is illustrated in figure 5.

Figure 5: Object creation procedure

When we want to create an object, we ask the framework to give us an object of a certain
identifier (step 1). The framework then prepares the creation of the object (step 2) by
determining which dependencies the identifier has. The missing modules are added to the
framework (step 3a or step 3b depending on the environment) before we extract the
functions of the inherited identifiers according to the design detailed in section 4.4.2 (step
4). Afterwards, the constructors are built (step 5), which are then used to create the object
(step 6). Finally, the object is given back to consumer code by passing it to the callback
(step 7).

4.6 Object Management
The framework is also responsible for managing objects. Sometimes, it is desirable to have
only one instance of an object in the entire program. One solution to achieve this is to use
the Singleton pattern, which hides the constructor and provides a static method to create
an instance [38]. This method returns always the same instance on subsequent calls. This
pattern is often criticised because it introduces global state and impedes testing [39] [40].
Furthermore, it would not be possible to implement this exact pattern, as JavaScript does
not have static classes. Therefore, our framework provides an alternative way, which does
not require these objects to be in the globally accessible, to achieve object sharing. If an
identifier is configured as shared, our framework will always return the same instance when
it is asked to create a new instance of the identifier.

 20

5 Implementation

The implementation is based on the design described in the previous chapter, but the
design is, to some extent, also a result of a partial implementation. In order to get the
design right, initially a quick prototype was developed to refine the basic concept that
derived from the requirements. This prototype then led to the detailed design described
earlier. The following chapter will focus on the development of the framework as it was
carried out from that point on.

5.1 Architecture
The framework presents itself as a single object to the user, called motionjs. This object has
a very simple public interface, consisting only of two methods: create and clone. clone is
creates an exact copy of an object, whereas create is responsible for creating new objects
(how this works internally is covered in the next sections). Objects can be created on the
server and on the client side only in asynchronous style, hence we pass a callback to the
create function, and the object is passed to the callback once it is created. While we could
return the object from the create function on the server (where modules can be loaded
synchronously), this would not be practical, as two different API’s would prevent us from
using the same script in both environments.

Although the API is the same in both environments, the inner working is very different.
This would result in an unnecessary overhead if we had the code for both environments in
the motionjs object. To minimize this overhead as much as possible, the framework instead
extracts all server specific code into its own file (called adapter/server.js) and all client side
code into another file (adapter/client.js). When the framework is build on each platform,
the respective adapter is loaded and merged into the core object (motionjs), which is
possible through JavaScript’s dynamic nature.

5.2 Object creation
Before an object can be created, the framework needs to make sure that it is ready to
create the object. The framework is prepared to create an object, if:

• All modules of its dependencies are loaded
• The ability objects are created
• A constructor (complete with the prototype) is available

In order to achieve this state, firstly, a list of identifiers that need to be loaded has to be
created (see code listing 1 of the function _buildInheritanceChains). This list of identifiers
(which is stored as an object called _inheritanceChains in the framework) can be consulted
by the framework to determine which identifiers are inherited by a given identifier. To
build _inheritanceChains, the function is called with the identifier for which to determine
the inherited identifiers. A flag loadModules indicates whether the module of the identifier

 21

should be loaded from the disk and stored as an object in the framework or not. This
depends on the environment:

• On the client, we only want to build the inheritance chains, as the modules are added

via a loaded script. This script consists of all modules required, which in turn are
determined in development context by the framework in the server environment. The
next section on module loading and the development server will explain in detail how
this works.

• On the server, we load the modules here (2), as the function _buildInheritanceChains
will have to visit each identifier required, and therefore it is ensured that all source code
needed to create an object from any identifier in _inheritanceChains is present
afterwards.

The identifier given to _buildInheritanceChains is only processed if it has not been entered
into _inheritanceChains previously (1). We also store the identifier into its own inheritance
chain, as this will simplify the steps needed to create an instance of an identifier later on
(3). We then iterate over the inherited identifiers specified in the object configuration,
retrieve the real identifier for each and call _buildInheritanceChains again. This will
recursively build the _inheritanceChains of all inherited identifiers. The newly build chain
will get concatenated to the current inheritance chain (4). To be able to create the
dependencies, we need to determine their inherited identifiers as well, which happens in (5).

Code listing 12: _buildInheritanceChains

Secondly, the ability objects (as detailed in chapter 4) need to be created, which is done in
_buildAbilitiyObjects. This function iterates over the previously created inheritance chain
for the identifier. In each iteration (for each inherited identifier), a new ability object is
created if it does not exist yet, containing just the functions defined in the object definition.

Thirdly, the constructor needs to be built. This is done in _buildConstructor, which first
part is shown in code listing 2:

 22

Code listing 13: _buildConstructor, part 1

The constructor needs to set all properties (except the dependencies which are injected later
on) defined in the identifier to be created and its inherited identifiers. Therefore, in (1), we
iterate over all object definitions in the inheritance chain and collect all properties which
are not functions (they have already been added to the ability objects in the previous step)
into a source object (2). This object is cloned on each instantiation, as can be seen in (3).

After the constructor is defined, its prototype needs to be attached in the second part of
_buildConstructor (see code listing 3).

Code listing 14: _buildConstructor, part 2

The prototype is used to store the function wrappers (applied in (6)) that delegate to the
ability objects. Furthermore, the prototype provides helper properties and functions to deal
with type information and inheritance:

• A _type property is added to easily retrieve the type (the identifier) of an object (2).

 23

• As we do not store all the inherited objects in the prototype, the instanceof operator
does not work anymore, so we provide an alternative isInstanceOf function in (3) .
This function checks whether the given identifier is in the inheritance chain we created
earlier. The inheritance chain is stored in the motionjs object though, and not in the
created object. Therefore we make use of a closure (see chapter 2) to access this
information from the isInstanceOf function. In (1) we store the reference to the motionjs
object in the variable self. We then use this variable in the isInstanceOf function to
access the _inheritanceChains property.

• In (3), we create the _uber function which provides access to overridden methods (see
chapter 4). It is given an identifier, a method name and an arbitrary number of
arguments. We can retrieve these from the arguments variable automatically provided
by JavaScript which holds all arguments passed to a function. Before we can use it, we
first need to convert it into an array, which is done in (4). Afterwards, we can either
call the function on the ability object with the given arguments, or, if the given
identifier has not been inherited, throw an error (5).

At this point, the framework is ready to create the object, so we call the _makeObject
function (code listing 4).

Code listing 15: _makeObject, part 1

The function has three parameters (1): The identifier to create, any arguments given to
initialize the object and a buildContainer.

In code listing 5, we’ll see that dependencies are created via recursive calls to
_makeObject. If there were no safeguard, a cyclic dependency would result in endless loops
and could never be built. To prevent this, we store each identifier build during one create
call in the buildContainer (again we’ll see this shortly in listing 5). If the identifier to make
is already present, we return it instead of building a new object (and calling _makeObject
again) (2).

Another case in which to return an object instead of making a new one is if the identifier is
configured as shared (see chapter 4). If the object has already been created, we access the
_sharedObjects property and return the shared object (3).

If the object has not been returned, we need to create a new object. This process is shown
in code listing 5.

 24

Code listing 16: _makeObject, part 2

First, we create a new object by using the new operator on the constructor stored in
_constructors (1). We store the object in the buildContainer to prevent endless loops, and,
if appropriate, also in _sharedObjects (2). Then we set the dependencies, for which we have
to iterate over all identifiers in the inheritance chain (3). For each identifier, we need to
retrieve the property name for which to set the dependency (4), and then store the
requested dependency object in there. We create this object by recursively calling
_makeObject (5).

After the object has been created, in code listing 6, we ensure that all requirements are met
(1). This is the case if all properties requested in the identifier itself or in any of the
inherited identifiers are present. If no exception is thrown, we call the init function of the
newly created object (3). We take into account that there might be defaultArguments
defined in the global configuration, so we merge them into the initArguments given (as
argument to _makeObject), giving precedence to the initArguments. (2). After we have
called the init function, we can delete it as it should really be called only once (3).

Code listing 17: _makeObject, part 3

5.3 Module Loading and Development Server
In this section, we’ll see how modules are loaded in a browser environment and how the
framework actually serves itself in this procedure. In the browser, before
_prepareObjectCreation can be called, the code has to be loaded from the server. This is
started in _loadModules in code listing 7.

 25

Code listing 18: _loadModules

For each load procedure, we need to store callbacks which can be executed once the
loading is done (the reasons for this technique have been outlined in chapter 4). We
provide a callback if the loading succeeds (1) and one if the loading fails (2). While the
callback in case of an error is simply the function the user provided, the success callback is
more complicated. After the scripts have been loaded from the server, we need to mark the
current identifier as being served and then start the object creation of the identifier (1).
Finally, we can resume the create procedure that was interrupted by the loading by calling
the given callback.

As discussed in chapter 4, script loading depends on the context the framework runs in. If
the mode is production, we do not access the development server but rather access the
static files already created. Their name consists of a hash over the combination of the
identifier and previously served identifiers (4). If we’re running in development context, we
access the development server and pass identifier and served identifiers in the query string
of the URL (5). The served identifiers will minimize the amount of code to load as they tell
the development server which identifiers have been loaded already to prevent modules from
being loaded twice. We then call _appendScript (6), which is shown in listing 8:

Code listing 19: _appendScript

We retrieve the head element of the page (1) and create a new script tag with the url
attribute set to the given URL (2). This script tag is then appended to the head tag (3),
which will cause the script to load. At the end of this script is a call to
_executeSuccessCallback (code listing 9) or _executeErrorCallback (code listing 10):

 26

Code listing 20: _executeSuccessCallback

Code listing 21: _executeErrorCallback

Both will retrieve the respective callbacks stored in listing 9 and execute them (and
therefore resume the create procedure).

The assembling of the scripts to be loaded (e.g. adding the function calls at the end) needs
to be done on the development server. How this is accomplished is described in the
following.

The development server is a simple NodeJS server as shown in listing 11:

Code listing 22: Development Server

In order to set up a server, we need to import the built-in modules http and url (1). The
server will run on the port we passed via the command line (we can rely that a port is
given because actually, the port is passed via our build system, which we’ll discuss in the
next section). The logic to handle the incoming requests is stored in our module assembler,
which therefore is included as well before we create our NodeJS server. This server is
instantiated via http.createServer (2). The server is then instructed to listen for requests on
the given port (7). Upon each request, the anonymous function passed to the server
instance is called with the parameters request and response (2). According to the pathname
part of the URL (retrievable from the request), each request will be mapped to a function
in the assembler module. This function will call the passed function callback upon its
completion. We do this instead of returning a string as I/O operations in NodeJS are non-

 27

blocking and therefore require us to work with callbacks. The callback executed is the
same for all requests and is defined in (3). It receives the arguments error and data. If error
is set, we respond with an internal server error (code 500). If no error occurred, we serve a
response with the given data and response code 200 (successful). If the pathname of the
URL does not match any of the defined options, we respond with error code 404 (not
found).

The 3 requests for which the development server sends a response are:

• /motion

This will respond with a complete motionjs object to be used by the client. It does this
by combining the files bundles/org.motionjs.core/lib/core.js and
bundles/org.motionjs.core/lib/adapter/client.js (which modifies the object defined in the
core module). Finally, the configuration object from configuration.js is given to the
_setConfiguration function of the motionjs object.

• /modules

Given an identifier, it will combine the modules required into one response. If previously
served identifiers are given as well, the modules that have been loaded already are not
served twice. At the end of the served script is a call to either _executeSuccessCallback
(see code listing 11) or _executeErrorCallback (see code listing 12). A sample response
might look like code listing 12:

Code listing 23: /modules response

The module is added to the motionjs object via the _addModule function. The function
receives two arguments: the identifier of the module, and a function (1) that wraps
around the original module content (3). The function defines an object exports (2), so
the definition and the configuration (3) are being set as properties on that object.
Finally, the exports object is returned. The wrapper function is executed immediately, so
that we actually pass an object as the second argument to _addModule. This object is
then stored in _modules and used by the framework. In (5) we see how at the end of
the /modules response, we call the success callback stored for the identifier in
_loadModules (see code listing 9) which started the loading initially. With this
wrapping done by the development server, we can use the CommonJS module system
without modification by the developer on the client side as well, which is a requirement
for our framework.

 28

• /file
For this request, the response is simply the file which name is given in the query string.
The development server reads the file content from the disk and sends it back to the
client.

5.4 Build System and Deploying
In the previous section we described how the module loading works in development
context. However, we need to prepare the static files for production context to not need a
NodeJS to serve the modules there. For this task and others like starting the development
server, we use a build system. This build system is based on Jake18, a build tool written in
JavaScript which is similar to build systems like Make or Rake. The tasks to executre are
defined in a Jakefile. Each task can be called from the command line by executing jake
<task name> in the directory of the Jakefile. The following tasks are available:

• devserver

Starts the development server. The port can be given as an optional argument and
defaults to 8080.

• deploy
Generates the files needed for the production context from the cached requests.

• cache
This task will need a second parameter to run. The argument show will display all
cached requests. delete and either a hash as third parameter to delete a single cached
requests or all to delete all requests. New requests can be added via add.

• demo
This command will run the server side demo file.

• interface
Given an identifier, interface will show the public methods of the identifier

• test
Our framework uses nodeunit19 as testing framework. nodeunit has the advantage of
being usable on both client and server side. This enables the developer to write unit
tests for both sides in the same style. With this task, server-side tests are executable
via jake test server path/to/file (multiple files can be executed if a folder is specified
containing many unit tests). On the client, test need to run in the browser. The
framework provides a simple test server (again a simple NodeJS server) which sole
purpose it is to dynamically serve a HTML response composed of the unit tests to run.
The test server can be invoked via jake test client path/to/file. The test will run on
each request to the testserver (e.g. running on port 8081).

18 https://github.com/mde/node-jake
19 https://github.com/caolan/nodeunit

 29

6 Evaluation

To evaluate how our frameworks performs compared to the YUI3 and Joose framework
discussed in chapter 3, we will pick up the point example again. We’ll see how it can be
implemented in MotionJS and what advantages this offers the developer. In the second
part of this chapter, we’re going to implement a simple event system to showcase other
features of our framework not touched by the point example.

In our framework, each object is defined in its own module and therefore in its own file.
The modules will be part of a bundle, for this example, we’ll call it org.motionjs.demo. The
following code listing 1 shows the equivalent of a Point class, stored in the file point.js:

Code listing 24: Content of bundles/org.motionjs.demo/lib/point.js

One thing to notice here is that we do not specify the identifier in the module. The
identifier is composed of parts of the filename, in our case org.motionjs.demo/point (the
corresponding filename is bundles/org.motionjs.demo/lib/point.js). The configuration is
empty as we do not inherit other identifiers or depend on other objects.

This is different for Point3D, which inherits from Point. Code listing 2 shows point3d.js:

Code listing 25: Content of bundles/org.motionjs.demo/lib/point3d.js

We only add one additional variable, z, as the variables x and y are inherited from
org.motionjs.demo/point. The inheritance is specified in the configuration part. Through
the _uber function in init and clear, we have access to the overridden methods. Note that
when we would inherit from multiple identifiers we could access the methods of each
specifically.

Now that the identifiers are defined it is time to use them. For our demonstration purposes,
we will create a single JavaScript file which we’ll run on the server first and then show that

 30

it can be used on the client as well with no modification. Code listing 3 shows the file
example1.js.

Code listing 26: Content of bundles/org.motionjs.demo/lib/example1.js

Note that we perform a simple check to determine if we’re in a server-side environment
(where there is no window object). In that case, we need to import the motionjs object. On
the client, motionjs is provided by another script, as we’ll see shortly. After the motionjs
object is present, we can use it to create objects from the identifiers. We pass the identifier
to create and the arguments that the init function of point (point3d) can take. The last
argument is the callback to execute when the object has been created. The callback
receives an error argument (undefined in the case of successful creation) and the object
created. To run the code on the server, we execute node example1.js in
bundles/org.motionjs.demo/lib. This will give us the output shown in figure 1:

Figure 6: Output of running example1.js

On the client, we create a simple HTML file (code listing 4) which includes two scripts:
The first is the motionjs core dynamically assembled by the development server (running at
localhost:8080). The second is the example1.js file we just created20.

Code listing 27: Content of web/example1.html

Before we access the HTML file, we need to start the development server. Figure 2 shows
how the server can be started via a Jake task from the root directory of the project:

20 Note that in a real setup, a user should not be able to access files outside the web directory for security
reasons: The JavaScript files inside the bundles directory might contain sensible information like passwords for
databases etc.

 31

Figure 7: Starting the development server

Important to note here is that the script does not terminate (see the cursor at the end of
the output in figure 2), the NodeJS server waits for requests until the process is ended.

With the development server running, we can now open the HTML file in a browser. As we
use console.log() calls to display the information in example1.js, we need to open the
JavaScript console of the browser (e.g. the Firebug21 console in Mozilla Firefox22) to see the
results (see figure 3).

Figure 8: Output of example 1 in the Firebug console

We see that example1.js has been executed and created the same result (though formatted
differently), but this time the identifiers were loaded via the development server. With a
tool like Firebug, we can trace what happened exactly. Figure 4 shows the requests made.

Figure 9: Request log in Firebug

We see that the first request was issued to receive the MotionJS core. Then we see two
modules requests. The first loads the identifier org.motionjs.demo/point, the second the
identifier org.motionjs.demo/point3d. Both times the served parameter is empty. In chapter
4, we saw that the framework is supposed to not send module code twice to the client. The
second request for org.motionjs.demo/point3d should not have to download
org.motionjs.demo/point, as this module is already loaded in the first request. However, as
no served parameter is set, the response for org.motionjs.demo/point3d contains the module
org.motionjs.demo/point as well (see figure 5).

21 https://addons.mozilla.org/de/firefox/addon/firebug/
22 http://www.mozilla.com/firefox/

 32

Figure 10: Response for request of org.motionjs.demo/point3d identifier

The reason for this is that the two requests happen directly after each after. At the point
the second request is issued, the first one has not returned yet, so the framework does not
have org.motionjs.demo/point served at this time. Of course, when
org.motionjs.demo/point3d is eventually constructed, org.motionjs.demo/point might have
been downloaded, resulting in unnecessary duplication. We can prevent this if we create
org.motionjs.demo/point3d only after we know that org.motionjs.demo/point3d has
loaded. To ensure this, we change example1.js as shown in code listing 5, nesting the two
requests.

Code listing 28: Modified content of bundles/org.motionjs.demo/example1.js

The output on the server and the client stays exactly the same23, but the client sends a
different request for org.motionjs.demo/point3d, as can be seen in figure 6.

23 Actually, in the previous example it would have been possible that point3d was created before point as there
is no guarantee that both requests take exactly the same time. With the nested approach the order is
determined.

 33

Figure 11: Firebug request log

This time, org.motionjs.demo/point is added as a served identifier (left of figure 6) and not
added to the loaded script (right of figure 6).

We have now demonstrated most of the basic functionality of MotionJS. The more
powerful features like dependency injection will be introduced in the next example. Let’s
imagine we want to be able to send events between some objects. These objects – we’ll call
them observable objects – should be able to add and remove event listeners, and to fire
events themselves. When an event is fired, all objects that listen for this event should be
notified. In the following, we’ll see how this scenario could be implemented in MotionJS.

We will create a new identifier called motionjs.event/observable which defines the methods
addEventListener, removeEventListener and fireEvent as shown in code listing 6. Every
object that wants to participate in the event system needs to inherit this identifier. Our
support of multiple inheritance makes it easy to do this as we don’t interfere with a
possibly existing type hierarchy.

Code listing 29: Content of bundles/org.motionjs.event/observable.js

Every object inheriting the observable object is now able to call these three methods (via
wrapper functions on the prototype which delegate to the functions in the observable ability
object). The methods in the observable object however just delegate to an event manager
(see code listing 6). This event manager is configured as a dependency and will be
automatically injected whenever an observable object is created. Of such an event
manager, there should be only one, in order that all event listeners are registered on the
same object and therefore all listeners can be called when the corresponding event is fired.
Code listing 7 shows the event manager:

 34

Code listing 30: Content of bundles/org.motionjs.event/manager.js

To demonstrate this simple event system we’ll extend our previous point/point3d example.
For example, assume we want to listen to an add event in point3d. Whenever a new
point3d is created, all existing point3d objects should be notified. For this to work, we
modify the org.motionjs.demo/point3d identifier to code listing 8:

Code listing 31: Modified content of bundles/org.motionjs.demo/lib/point3d.js

 35

We can simply add the org.motionjs.event/observable identifier to the inheritance chain to
enable every instance of org.motionjs.demo/point3d to be observable. Note that if
org.motionjs.event/observable would define a clear function (e.g. for removing all event
listeners of the object), we would still have the possibility to access both the
org.motionjs.event/observable‘s clear function and the org.motionjs.event/point’s clear
function via the helper _uber.

Now the event manager is a really naive implementation. For example, there is no
indication which events are available. How would a class know which events might be
fired? This is a serious flaw and should be improved. However, assume that the event
manager is part of a bundle provided by someone else. The bundle itself uses the event
manager quite heavily and we don’t want to change the source code because this would
stop us from simply updating the bundle (e.g. via a version control system). We can solve
this problem elegantly with MotionJS as it offers the possibility to provide an alternative
implementation for an identifier. Whenever the identifier is used, the implementation we
provide is chosen by the framework, even in code we do not own. To see how this works,
we instruct the framework in the global configuration that the event manager should be
provided by another implementation. A sample configuration is shown in code listing 9.

Code listing 32: Content of configuration.js

For the purpose of this example, we simply want to demonstrate the mechanism rather
than providing a different functionality, so we just copy the previous event manager and
only add console.log() calls to each function. To prove that the event system now works as
expected, we create another file called example2.js, which is shown in code listing 10.

Code listing 33: Content of bundles/org.motionjs.demo/lib/example2.js

When we run this code via node example2.js, we will see that our own event manager has
been used indeed, as shown in figure 7. The log calls have not been present in the original
implementation (see code listing 7 for reference).

Figure 12: Output of running example2.js

The two created objects add an event listener in their init function and subsequently, fire
the add event. When the first point is created, only its own event listener is notified.

 36

However, when the second point is created, two objects have been registered at the event
manager to be notified, therefore “onAdd called” is printed twice. This proves that our setup
with the shared event manager that is injected into the org.motionjs.demo/point3d
instances and accessed via the inherited observable object works.

To summarise the evaluation of our framework, we’ll contrast our framework to the
alternatives (see the analysis in chapter 3) in table 1. The rows are composed of the
features that have been demonstrated in the two examples carried out above. The support
of each feature is indicated in the respective column of the framework.

 YUI3 Joose MotionJS
Access overridden methods Only in

superclass
Only in superclass In full hierarchy

Use on both client and server
side without modification

No -24 Yes

Single HTTP response Only on CDN No Yes
Shared objects Partial25 Via singleton Yes
Dependency Injection No No Yes
Exchange implementation No No Yes
Table 1: Feature comparison of YUI3, Joose and MotionJS

24 Could not be verified, see chapter 3 for details
25 Possible only in one YUI instance, which is not always practical

 37

7 Conclusion

In the introduction, we laid out how JavaScript has increased in importance and
popularity over the last years. With this growth, the need for better support of large
systems has risen as well. The goal of this project therefore was to develop a framework
which enables composition of many scripts, fosters reuse and especially minimizes the effort
to switch between client and server side development. The exact requirements chosen for
the project where determined in chapter 3.

In the last chapter, we have evaluated how the developed framework MotionJS can be
used to build applications and which features support the developer in his work. In this
final chapter, we are going to reflect upon our work and investigate where improvement is
needed and which steps could be taken next.

The basis of our framework really is the system to compose software from different scripts
and whole bundles (see chapter 4 and 5), built upon the module standard proposed by
CommonJS. While this definitely improves organisation of code, it does not fully alleviate
the lack of a native module system. One reason for this is that the CommonJS standard
has been designed for a synchronous environment, making it hard to be used on the client.
We solved this problem by wrapping dependent code in functions, which in turn requires a
development server to dynamically create the correct files. Although we believe our
solution is superior to current alternative solutions, it is definitely not ideal. A native
module system (like in Python, see chapter 3) is needed. This module system would have to
work both server and client side (removing the workaround to load JavaScript files by
appending script tags to the head of an HTML file), ideally allowing static loading (before
any code is executed) and dynamic loading (supporting a callback mechanism to determine
when to execute dependent code). Current discussion on the next version of JavaScript
hints at a such a module system, see David Herman’s talk at the Mountan View JavaScript
meetup in February 2011 [41].

Another problem we tackled stems from JavaScript’s dynamic nature. Best practices in
other languages have shown that programming against abstractions (interfaces), not
against particular implementations lead to better maintainability, making it easier to
(ex)change code. Our framework provides a way to exhange the implementation of an
identifier, which allows the developer to swap implementations without interface support of
the language itself. However, this shifts the responsibility of keeping the contract to the
developer: The framework does not ensure alternative implementations really provide all
required functions; and that the signature of the functions are the same as well. There are
two reasons for this: Firstly, objects can be modified at runtime in JavaScript, and
secondly, the type of parameters in JavaScript cannot be retrieved and/or ensured. While
this offers great flexibility often desirable in small projects, it becomes increasingly difficult
to manage software of larger scale without type safety. Unfortunately, this problem has to
be solved by the language itself and therefore, our framework cannot provide a solution.
Again, recent development in JavaScript has realized this problem and ECMAScript 5

 38

allows the developer to control the flexibility of the objects in his program. For example, it
is possible to seal objects, preventing properties to be added or existing ones to be removed
(for more on this, see [INSERT CITATION MANUALLY].

Apart from these shortcomings of our framework (or rather, JavaScript itself), we also
identified some possible addtions that could be developed in the future. One of them is to
support getters and setters to improve encapsulation. Instead of having publicly accessible
properties, we could hide all variables and expose selected ones by automatically assigning
getters and, if wanted, setters to them. JavaScript introduced support for this via property
descriptors in ECMAScript 5 [INSERT CITATION MANUALLY].

Another addition could be to implement support for aspect oriented programming (AOP).
AOP allows a developer to keep concerns separate and to weave so called aspects into
code, e.g. add logging or security to functions or whole classes. JavaScript’s dynamic
nature would allow us to implement AOP during runtime quite easily (e.g. it is possible to
replace functions). Furthermore, the next version of JavaScript might feature proxies [42]
[43], which could provide an alternative, maybe more performant way to implement this.

That being said, the current state of the framework already solves many problems
developers face when building large software which JavaScript, especially fostering code
reuse and organisation. Therefore, the project was able to meet its original objectives.
During the development, especially NodeJS turned out to be a well-suited platform The
best example for this is its capability to develop servers very easily, which led to our
solution to let the framework serve itself in the development context. As this technology is
just starting to be used more widely, it is safe to assume that other frameworks and ideas
with similar objectives to our project will spread up. Alongside, the language is getting
more mature to become better suited outside its original scope. This process has started
with the release of ECMAScript 5 in 2010 and will be continued with the next version. All
in all, it will be interesting to see in which directions JavaScript evolves and if it is going
to be used indeed for larger software, both client and server side.

 39

References

8 Literaturverzeichnis

[1] Stephen Chapman. A Brief History of Javascript. [Online].
http://javascript.about.com/od/reference/a/history.htm

[2] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek, An Analysis of the
Dynamic Behavior of JavaScript Programs.

[3] Mitch Allen, Palm webOS. Sebastopol, USA: O'Reilly Media, 2009.

[4] Douglas Crockford, JavaScript: The Good Parts. Sebastopol, USA: O'Reilly Media, 2008.

[5] ECMAScript Comittee. (1999, December) ECMAScript Language Specification, 3rd
Edition. [Online]. http://www.ecma-international.org/publications/files/ECMA-ST-
ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf

[6] ECMAScript Comittee. ECMAScript Language Specification, 5th Edition. [Online].
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf

[7] CommonJS: JavaScript Standard Library. [Online]. http://www.commonjs.org/

[8] modules - Node.js Manual & Documentation. [Online].
http://nodejs.org/docs/v0.4.3/api/modules.html

[9] Martin Fowler. (2004, January) Inversion of Control Containers and the Dependency
Injection pattern. [Online]. http://martinfowler.com/articles/injection.html

[10] Misko Hevery. (2008, July) How to Think About the “new” Operator in Respect to Unit
Testing. [Online]. http://misko.hevery.com/2008/07/08/how-to-think-about-the-new-
operator

[11] The Transparent Language Popularity Index. [Online]. http://lang-index.sourceforge.net/

[12] Brian Shire. (2007, May) Facebook. [Online].
http://blog.facebook.com/blog.php?post=2356432130

[13] Brian Fioca. (2006, April) O'Reilly ONLamp Blog. [Online].
http://www.oreillynet.com/onlamp/blog/2006/04/digg_phps_scalability_and_perf.html

[14] (2011, March) PHP: Namespaces overview. [Online].
http://www.php.net/manual/en/language.namespaces.rationale.php

[15] (2011, March) PHP: require. [Online]. http://php.net/manual/en/function.require.php

[16] (2011, March) PHP: Autoloading. [Online].
http://php.net/manual/de/language.oop5.autoload.php

[17] Modules - Python 3.2 documentation. [Online].
http://docs.python.org/py3k/tutorial/modules.html

[18] (2011, February) Modules/1.1 - CommonJS Spec Wiki. [Online].
http://wiki.commonjs.org/wiki/Modules/1.1

[19] Swaroop C H, A Byte of Python., 2008. [Online].
http://www.swaroopch.com/notes/Python_en:Object_Oriented_Programming

 40

[20] (2010, December) Special Operators: new. [Online].
https://developer.mozilla.org/en/JavaScript/Reference/Operators/Special/new

[21] Douglas Crockford. Classical Inheritance in JavaScript. [Online].
http://www.crockford.com/javascript/inheritance.html

[22] Douglas Crockford. (2008, April) Prototypal Inheritance in JavaScrip. [Online].
http://javascript.crockford.com/prototypal.html

[23] (2011, March) PHP: Visibility. [Online].
http://www.php.net/manual/en/language.oop5.visibility.php

[24] Classes - Python v3.2 documentation. [Online].
http://docs.python.org/py3k/tutorial/classes.html#private-variables

[25] (2011, March) PHP: Interfaces. [Online].
http://www.php.net/manual/en/language.oop5.interfaces.php

[26] Matt Zandstra, PHP Objects, Patterns, and Practice. New York, America: Springer
Verlag, 2008.

[27] (2011, March) PHP: Object Inheritance. [Online].
http://www.php.net/manual/en/language.oop5.inheritance.php

[28] Classes - Python v3.2 documentation. [Online].
http://docs.python.org/py3k/tutorial/classes.html#inheritance

[29] Built-In Functions - Python v3.2 documentation. [Online].
http://docs.python.org/py3k/library/functions.html#super

[30] Yahoo! User Interface Library: Sites powered by YUI. [Online].
http://developer.yahoo.com/yui/poweredby/

[31] YUI 3: YUI Global Object. [Online]. http://developer.yahoo.com/yui/3/yui/

[32] Dav Glass. (2010, April) Running YUI 3 Server-Side with Node.js. [Online].
http://www.yuiblog.com/blog/2010/04/05/running-yui-3-server-side-with-node-js/

[33] YUI Configurator. [Online]. http://developer.yahoo.com/yui/3/configurator/

[34] joose-js. [Online]. http://code.google.com/p/joose-js/

[35] Misko Hevery. (2010, April) Move over Java, I have fallen in love with JavaScript.
[Online]. http://misko.hevery.com/2010/04/07/move-over-java-i-have-fallen-in-love-
with-javascript/

[36] Why RequireJS? [Online]. http://requirejs.org/docs/why.html

[37] Jan Wolter. (2007, March) JavaScript Madness: Dynamic Script Loading. [Online].
http://unixpapa.com/js/dyna.html

[38] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Upper Saddle River: Addison-Wesley,
1995.

[39] Misko Hevery. (2008, August) Root Cause of Singletons. [Online].
http://misko.hevery.com/2008/08/25/root-cause-of-singletons/

[40] (2008, May) TotT: Using Dependancy Injection to Avoid Singletons. [Online].
http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html

 41

[41] David Herman. (2011, February) ECMAScript.Next with David Herman of Mozilla.
[Online]. http://www.youtube.com/watch?v=hs6tF-RDX4U&feature=player_embedded

[42] (2011, March) Proxy. [Online].
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Proxy

[43] (2011, March) Catch-all Proxies. [Online].
http://wiki.ecmascript.org/doku.php?id=harmony:proxies

[44] (2011) Programming Language Popularity. [Online]. http://langpop.com/

[45] Douglas Crockford. (2001) Private Members in JavaScript. [Online].
http://www.crockford.com/javascript/private.html

[46] Andreas Junghans and Tilman Schneider. (2008, November) heise Developer. [Online].
http://www.heise.de/developer/artikel/Closures-227494.html

[47] (2011) TIOBE Programming Community Index for February 2011. [Online].
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[48] Chuck Esterbrook. (2001, April) Using Mix-ins with Python. [Online].
http://www.linuxjournal.com/node/4540/print

