

MSc Computer Science
Department of Computer Science and Information Systems

Birkbeck, University of London

Project Proposal

A Recommendation Engine
 Amy Peters

This proposal is substantially the result of my own work, expressed in my own words,
except where explicitly indicated in the text. I give my permission for it to be submitted

to the JISC Plagiarism Detection Service.

Abstract
I propose to implement a recommendation system, using collaborative filtering

techniques, for the interactive online community Deep Underground Poetry. Using data
which has been collected from members, I intend to compute a list of suggested

reading which is personalised to each user. The engine will need to respond quickly to
changes in data in order to give users up to date recommendations. The overall aim of

the system is to promote interaction between members by increasing the number of
views, ratings and comments each poem receives, by guiding people towards poems

which they should enjoy.

Supervisor: Keith Mannock

April 2011

 Amy Peters – Project Proposal – A Recommendation Engine 2 of 12

Introduction
1.1 Giving the People What They Want page 3

1.2 Existing Recommendation Systems page 4

1.3 Aims and Objectives page 4

Theory
2.1 An Introduction to Collaborative Filtering page 5

2.2 Approaches

2.2.1 The Neighbourhood Approach page 5

2.2.2 Latent Factor Models page 7

2.2.3 Hybrid Approach page 8

2.3 Accuracy Metrics page 8

Development
3.1 The Existing System and Data Set page 8

3.2 Implementation and Operational Issues page 10

3.3 Results and Analysis page 10

3.4 Time Line page 11

 Amy Peters – Project Proposal – A Recommendation Engine 3 of 12

Introduction
1.1 Giving the People What They Want
 In August 2009 I re-launched an online creative writing community called Deep Underground
Poetry (DU Poetry) [1], which I originally started in 1999. For ten years, the website had been offline
and the internet had changed enormously during this time. However, through re-establishing DU
Poetry over the last few years, it became apparent that one of the key challenges still remained;
finding ways to encourage people to read and comment on other peoples’ submissions. Giving
members the feedback and attention they crave is a key part of creating a thriving community and
retaining an active membership. Discussions related to this issue frequently crop up on the DU Poetry
“suggestions” forum. In addition, a homepage poll showed that feedback from others was important to
more than half of respondents [2].

Fig.1 Screen grab from DU Poetry, take on 8th April 2011.

 There are a number of ways in which online poetry communities have tried to increase
commenting levels. Some websites force their members to make comments, so as to artificially
increase the number of comments made. For example, GS Poetry [2] requires members to gain
credits by making comments before they are allowed to “showcase” a poem. GotPoetry [3] implements
a “karma” system, to stop less active members from rating poems without leaving a comment. DU
Poetry offers incentives, like extra exposure for their poems, to “top-critiquers” (members who make
lots of useful comments). Despite these efforts, the average number of comments that each poem
receives still remains relatively low; currently less than 1.5 comments per poem on DU Poetry. In
addition, the risk of enforcing measures is that the quality, usefulness and comprehensiveness of the
feedback is diminished. Keen to explore more organic ways to increase the number of comments; I
created another DU Poetry poll asking whether people were more likely to comment on poems they
liked, or poems they disliked [4]. To date, 100% of respondents have answered that they more often
comment on poems that they like. My challenge is to find a way for people to more easily and quickly
discover poems that they might actually want to read and comment on. I also hope to address the
issue of maintaining exposure for older submissions, which no longer appear on the first few pages of
listings, and can therefore go undiscovered by new members.

 Developments in technology (hardware, software and connection speeds) have made it
possible to collect vast amounts of data from users and with this has come the increased use of
collaborative filtering (CF). CF is a way of analysing information with the filtering process shared
among a large group of people. Unlike conventional media like newspapers and television, where
there are a few editors controlling output, the CF model can have infinitely many editors and improves
as the number of participants increases [5]. If I can manipulate data about which poems my members
respond to positively, then I can then use this to provide them with a list of personalised
recommendations (poems they haven’t read yet, but should theoretically enjoy).

 Amy Peters – Project Proposal – A Recommendation Engine 4 of 12

 1.2 Existing Recommendation Systems
 Many successful websites use collaborative filtering techniques to implement some form of
recommendation engine. This could be something which looks relatively simple on the surface, such
as keeping track of positive votes (upvotes or “thumbs up”) and negative votes (downvotes or “thumbs
down”). For example, Reddit [6], Delicious [7] and Digg[8] gauge the popularity of user posted links,
based on analysing positive and negative votes. However, the algorithms involved in this process may
be far more complex then they appear at first glance. Although these websites keep the specifics
private (to avoid abuse of the system), much hypothesising takes place on forums and blogs as to
what’s involved in the underlying algorithms. Suggestions include; the domain of the link, the profile of
the submitter, profiles of the voters, similarity to other links, the source of the votes and the number of
views and comments the link receives [9].

 When Greg Linden, the creator of Amazon’s recommendation engine, left Amazon in 2002 he
reported that over 20% of sales came from personalized recommendations, the figure is estimated to
be even higher today [10]. Amazon’s recommender system suggests products to customers based on
their past purchases and the items they currently have in their shopping basket. The idea is similar to
that of placing impulse buy items near a supermarket checkout, but Amazon’s suggestions are
targeted to each customer. An item-to-item collaborative filtering algorithm was developed in order to
handle the massive data set involved and achieve the scalability and performance they required. The
key to its success was that the computationally expensive task of creating the “similar items” table
takes place offline. The online part (looking up similar items for a particular user) scales independently
of the size of the overall data set, so the system remains fast despite the huge amount of data
involved [11]. The algorithm also performs well with limited user data; it is able to produce
recommendations based on just a few items.

 Netflix is an American company that offers on-demand video streaming and online requests
for video rentals. In 2006, Netflix deemed their film recommendation feature so critical to their
business that they launched the “Netflix Prize” competition. They offered one million dollars to the
winning team, if they could beat the accuracy of their “Cinematch” recommendation system by more
than 10%. The competition ended in 2009 and the winning team BellKor's Pragmatic Chaos published
a paper outlining the techniques they used. This included identifying a number of temporal effects
which influenced the ratings a user gave; movie bias (film popularity fluctuations), user bias
(fluctuations in how harshly the user rated things) and user preferences (for example, a fan of one
genre may later become a fan of another, related genre) [12]. The “Netflix Prize” sparked a surge of
interest and development in the area of recommendation systems [13]. Many of the papers cited in
this proposal were published as a direct result of the progress made by those who took part.

1.3 Aims and Objectives

 I intend to provide members with a personalised list of recommended reading and also display
a selection of “poems like this” on each poem's page. My key objectives are:

ñ Tune an algorithm to give quantitatively “accurate” recommendations (see section 2.3).

ñ Look for patterns in users' tastes in relation to characteristics like their age and location.

ñ Build an efficient and scalable system which reacts quickly to new information.

ñ Develop the system in response to implicit and explicit feedback from users.

 Amy Peters – Project Proposal – A Recommendation Engine 5 of 12

Theory
2.1 An Introduction to Collaborative Filtering

Recommendation engines use collaborative filtering (CF) as a method of making automatic
predictions about which items will suit a user (filtering), by collecting information about the past actions
of many users (collaboration). CF techniques don’t rely on specific domain knowledge and can be
applied to sparse data sets, thereby avoiding the need for comprehensive data collection (it should not
be necessary for a user to evaluate a vast number of items). Yehuda Koren (one of the members of
the winning Netflix Prize team) outlines two main approaches to CF; the neighbourhood approach and
latent factor models [14], these can also be described as memory-based and model-based [15].

2.2.1 The Neighbourhood Approach (Memory-Based)

Neighbourhood based models are currently the most common approach to CF [14]. They use
some form of the k-nearest neighbours algorithm (k-NN) to compute the relationship between items, or
between users. k-NN is a simple machine learning algorithm where an item is classified by the
average of its k nearest neighbours, where k is a positive integer, typically small (for example, if k = 1
then the unknown rating would get the value given by the most similar user who has rated that item).
The best value for k is application specific and can only be found by experimenting with the data set. It
is typical for a weighted average to be used, with the closest (most similar) neighbours contributing
more. To work out which are the closest neighbours, a distance metric is used. A simple example is
Euclidean Distance which measures a straight line distance between two points (X and Y) using the
following algorithm:

Applying this to real data involves comparing two items (as if they were axes on a graph),

using the ratings given by users who have ranked both items. I have used sample data from DU
Poetry with ratings computed based on user actions (member and poem IDs have been concealed for
data protection purposes).

 User 1 User 2 User 3 User 4
Poem A 1 3 2 3
Poem B 2 3 0 1

Fig. 2 Sample data from DU Poetry

Poem A has coordinate (1, 3, 2, 3) and poem B has coordinate (2, 3, 0, 1) so the Euclidean
Distance between poem A and poem B is:

 Amy Peters – Project Proposal – A Recommendation Engine 6 of 12

 An even simpler alternative to Euclidean Distance is Manhattan Distance, where the differences
between the co-ordinates are absolute values (not squared or square rooted). The Manhattan Distance between
poem A and poem B is 3. Both of these distance metrics can be generalised as Minkowski Distance, where
r in the following algorithm can be any number. The greater the value of r, the more that a difference in
one dimension will influence the total difference [16]:

When we are working with a data set where there are unknown values, it is necessary to
compensate for the fact that the distance is likely to be shorter where users have lots of ratings in
common; creating a false sense that they are more similar then they actually are. This can be
remedied by dividing the total distance by the number of dimensions (items which both users have
rated).

An issue with Minkowski Distance is that it doesn’t allow for differences in the way users rate
items, for example, one user may rate things more generously than another (referred to as “grade
inflation”). The Pearson correlation coefficient is a more sophisticated way of determining similarity,
which can correct this problem [17]. It is a measure of the correlation between two variables ranging
from -1 to 1 inclusive; 1 indicates perfect agreement (all data points lying on a line for which Y
increases as X increases) and -1 indicates perfect disagreement (all data points lie on a line for which
Y decreases as X increases). A value of 0 implies that there is no linear correlation between the
variables.

A number of other distance metrics exist including; cosine similarity which measures the
similarity between two vectors by finding the cosine of the angle between them and Jaccard index
which measures the similarity between sets. Finding the most effective distance metric to use will be a
key part of developing the algorithms for my recommendation engine.

K-NN suits collaborative filtering well because it’s an “online technique”, meaning that new
data can be added without having to retrain the data or estimate new parameters [17]. This means the
system is able to provide updated recommendations immediately after a user has entered new
feedback. However, for new items the system cannot respond immediately, as it needs to learn the
new parameters [14]. This fits well with my intentions as the engine will need to be able to provide
recommendations quickly to active new members, but won’t need to promote the most recent poem
submissions (as they will start out featuring prominently in listings). Another advantage of
neighbourhood models is that they are explainable; it’s possible to identify which past user actions
have been the most influential in predicting which items to recommend [14, 17]. This can enrich the
experience for the user in a number of ways; giving them information about how and why the
recommendations were selected, building confidence in the system and allowing them to tell the
system when it’s wrong [18].

However, k-NN suffers from a major weakness; its relatively high computational cost. This is
because every user must be compared to every other user in order to determine which are its closest
neighbours [17], this limits the scalability of the neighbourhood approach.

 Amy Peters – Project Proposal – A Recommendation Engine 7 of 12

2.2.2 Latent Factor Models (Model-Based)
 Model-based approaches include neural networks, Bayesian networks and models using the
linear algebra technique of singular value decomposition (SVD), in order to factorise a user-item
ratings matrix. Recently, SVD models have become popular for collaborative filtering due to their
accuracy and scalability [14, 19]. Rather than directly setting out to make predictions, instead they
use machine learning to characterise the data and uncover the underlying causes (factors) that work in
combination to describe the data set [17].

The idea is to decrease the amount of computation required by reducing the size of the matrix.
Instead of comparing every object (item or user) to every other object, instead you define each object
by a number of factors. For example, when the items are poems, factors which might emerge may be
related to how funny or sad a poem is. Rather than having to manually define these characteristics,
the algorithm finds patterns in the existing data and discovers the generalisations (also called
eigenvectors) for itself. Imagine a data set of 1000 users and 15000 items; this would involve 1000 x
15000 = 15000000 computations. However, if each object had just 40 factors, that could be used to
compare it to other objects, then it would only require 40 x (1000 + 15000) = 640000 computations
[20]. Given a m x n matrix A with rank r (the number of factors which we want to define items by), the
singular value decomposition SVD(A) is defined as:

SVD(A) = U x S x V T

Matrix S is a diagonal matrix called the singular having only r nonzero entries (r x r), which
means the effective dimensions of the orthogonal matrices U and V are m x r and r x n respectively.
The first r columns of U and V represent the eigenvectors associated with the r factors of AAT and ATA.
For the matrix A it can be said that the columns corresponding to the r values span the column space
in U and the row space in V. The following illustration represents this on a very small scale:

For this example (using an r value of 2) the algorithm has identified the two most prevalent

characteristics by which to describe users and poems (sad and funny). Each poem is given a value for
each characteristic and every user has a value representing how much they like that characteristic. By
multiplying the two matrices together we get a representation of the original matrix (which is a “marks
out of ten” rating made by each user for each poem). We can see that User 2 has given Poem 1 a
high mark and this was factorised into both being given a high value for the factor 2 characteristic
“funny”.

One possible advantage of the low-rank approximation resulting from SVD is that the resulting
data may in fact be better than the original full matrix, as the process may actually filter out some
unwanted “noise” from the data [21]. However, the opposite may also be true, especially when
applying SVD to collaborative filtering, due to the high proportion of missing data. Addressing only the
known values is prone to overfitting (where there aren’t enough values to consider, so a random error
or “noise” value may be given undue influence over results [22]). Variations of SVD have been
developed to try and address this problem [23]. One notable example is that of incremental SVD,
devised by Simon Funk during the “Netflix Prize” competition [20]. He incorporates a technique for
regularising the model in order to identify abnormal values and avoid overfitting.

 Amy Peters – Project Proposal – A Recommendation Engine 8 of 12

2.2.3 Hybrid Approach
When the Bellkor team won their progress award during the “Netflix Prize” competition in

2007, their solution consisted of blending the results of 107 algorithms [24]. They used the approaches
I have described above, along with Restricted Boltzmann Machines (a type of neural network [25]) and
regression models. Their research indicates that predictive accuracy can be greatly improved by
blending different approaches, instead of refining a single technique.

2.3 Accuracy Testing

If a number of known values are removed from a data set and then computations are
performed on the remaining data, the resulting values can be compared with the actual values in order
to access the accuracy of the algorithm. In statistics, the mean squared error (MSE) is one way of
quantifying the difference between the estimated values and the true values. It works by squaring the
difference between each of the actual values and the estimations, then adding them together and
diving by the total number of predictions. For example, if an algorithm predicted two item ratings as 2.5
and 3, and the actual values were 4 and 2 then the MSE would be:

(1.5 x 1.5) + (1 x 1) = 2.25 + 1 = 3.25 / 2 = 1.625

 Root mean square error (RMSE) is slight variation on MSE and is useful when
communicating results to others because the RMSE is measured in the same units as the data, rather
than in squared units, so it’s representative of the size of an actual "typical" error. The RMSE of the
values above is simply the square root of the result, so 1.275. The “Netflix Prize” used RMSE as the
accuracy metric for judging the entries [13].

An alternative to this is mean absolute error (MAE) which is less sensitive to large prediction
errors. It is simply the average of the absolute errors, so for the values above:

(1.5 + 1) / 2 = 1.25

By dividing the known DU Poetry data into segments, and using these estimators on each part
independently, I will be able to assess the quantitative accuracy of my algorithms.

Development
3.1 The Existing System and Data Set

Like any website starting out on a new domain name (without a budget for promotion) it has
taken DU Poetry time to gain popularity and establish reasonable search engine rankings. The amount
of new members signing up continues to increase month on month, with 199, 252 and 279 new
members joining in January, February and March of 2011 respectively. The number of active
members; those logging in within the last two months, is approximately 1000 and the total number of
poems published exceeds 15000.

 Amy Peters – Project Proposal – A Recommendation Engine 9 of 12

Fig. 3 An entity-relationship model using Chen notation, showing relevant tables and

attributes in the existing DU Poetry MySQL database.

There are a number of features which I have implemented in order to gauge a member’s
reaction to a poem. These include an anonymous “like this?” option and a personal reading list, to
which a member can add their favourite poems. In addition, a member can “follow” another member
poet, this means they receive a message in their updates feed each time that member makes a new
submission. Poem views are also logged, in order to keep track of which members have viewed which
poems. Below is a summary of each of these features, along with the current usage statistics (from the
website's MySQL database, queried on 11th April 2011):

Feature Launch Date Total
Entries

Entries Last Month
(March ‘11)

Reading List 30th December 2009 3749 490

Poem Views 11th July 2010 63976* 12691*

Followers 11th July 2011 2514 425

Likes 25th February 2011 3855** 2328**

* I have only included poem views made by members (counting only the
most recent for any given poem), anonymous visitors are not included.

** “Likes” which also have an associated reading list entry are not included; a
reading list entry takes precedence over a “like”.

 During the last month, since the “like” feature has been launched, there has been a significant
increase in the amount of data collected. Over 22% of the time when a member views a poem it
results in a positive action; a “like” or reading list entry.

 Amy Peters – Project Proposal – A Recommendation Engine 10 of 12

I have always been keen to avoid a “marks out of five” style ratings system for poems,

because it doesn’t fit well with the creative nature of the content. There is also strong evidence that
five-star ratings systems don’t work. YouTube has abandoned its five star ratings system, switching
instead to a simpler "Like / Don't Like" model, because almost all videos were receiving the maximum
(five stars) rating from users [26]. For the DU Poetry recommendation engine, I intend to use the data
which I currently collect in order to “simulate” poem ratings. For example, a followed author's poems
may count as a rating of 1, a “like” count as a 2 and a reading list entry count as a 3. Although poem
views may not have a major impact on the algorithm, they are useful in determining which poems a
user has already looked at, so as not to recommend them poems which they have already read.

3.2 Implementation and Operational Issues
 Although DU Poetry is coded primarily in Perl, I have decided to write my project in Scala
because I would like to learn a new programming language. Scala is widely considered a reliable and
scalable language, which has grown in popularity very quickly since its release in 2003, and has been
adopted by major websites like Twitter and LinkedIn [27]. I am aware that it may take longer and also
be more challenging to write code in an unfamiliar language.

 Integrating my recommendation engine into the current DU Poetry website may present some
complications. One consideration is how best to fit the Scala code into the current Perl HTML template
system. Furthermore, the website is currently hosted on a shared web server and there are limits in
place restricting the maximum number of simultaneous database connections. I also have very little
control over the database settings. If this presents a problem I may need to implement a separate
database structure for the recommendation engine, or move the website onto a semi-dedicated (virtual
private) hosting package.

 The user testing aspect of development may also present challenges, as I will be relying on a
core membership of dedicated members to trial the system and provide me with timely feedback.
Depending on how complete and user friendly the system is during the development process, I may
have to limit the number of members involved in testing. In which case, along with managing the
expectations of volunteers, I will also have to deal with any social issues which emerge, as a result of
choosing the participants.

 The sparse nature of the data set (outlined in 3.1) may restrict my choice of suitable
algorithms. However, if growth continues at the current rate, then the amount of data collected should
more than double over the next three months, with the number of “likes” set to more than triple. This
issue may also be helped by the fact that a “followed” poet can contribute multiple ratings because
every poem by the “followed” author is included. The average number of poems by each member,
currently being followed by at least one other member, is 24.

3.3 Results and Analysis
It is recognised that accuracy metrics (outlined in section 2.3) can only partially evaluate a

system; user satisfaction (for example, the diversity of recommendations given and the user’s trust in
the system) are increasingly seen as important [15]. Throughout development I will be making full use
of the fact that I have real data and real people to interact with, by collecting data both implicitly and
explicitly. Direct feedback will be requested from users to help ascertain how useful each
recommendation was and at the end of the process I will produce a questionnaire to assess the
general response of participating members.

 Amy Peters – Project Proposal – A Recommendation Engine 11 of 12

I also intend to produce statistics from tracking the actions taken (views, “likes”, comments

and reading list entries) on poems which have been recommended. Benchmarks for assessing the
results will be calculated from existing response levels, for example, to date there are 62550 recorded
poem visits by members, and 13441 (or 21.5%) of these resulted in a comment being made (not
including members viewing or adding comments to their own poems). Another consideration is the
submission dates of the poems being recommended. I intend to compare the ratio of old and new with
that of the current levels, to see if more exposure for older poems has been achieved. A sizeable 37%
of poem views on DU Poetry during the last week relate to poems submitted during this time, despite
them making up only 3% of the total poems.

3.4 Time Line

WEEK KEY TASKS
1 Learn Scala basics

2 Code up first iteration of test algorithms using data snapshot.

3 Create front end for testing and collecting feedback from users.

4 Implement and collect results from first iteration code, address any front end
usability issues raised by users.

5 Write code for second iteration.

6 Implement and collect results from second iteration, work out solution for efficient
access to live data (for the system and for users).

7 Analyse what part user characteristics (age, location etc.) play in ratings, and see if
the algorithms can be improved using this information, produce third iteration code.

8 Implement and collect results from third iteration, implement data access (and real
time updates) solution.

9 Study results and feedback so far and produce a final iteration code.

10 Implement and collect results from final iteration, produce questionnaire.

11 Look at scalability issues to future proof the recommendation engine, such as data
mining optimisations and cloud computing.

12 Evaluate the project; collect questionnaires and produce graphs and statistics of all
results so far.

13 Write up project.

 Amy Peters – Project Proposal – A Recommendation Engine 12 of 12

References
[1] Deep Underground Poetry, http://deepundergroundpoetry.com

[2] GS Poetry, http://www.gspoetry.com

[3] GotPoetry, http://www.gotpoetry.com

[4] Deep Underground Poetry, Deep Underground Poetry Poll: Which do you most often comment
on?, http://deepundergroundpoetry.com/polls/12

[5] Read Write Web, Collaborative Filtering: Lifeblood of the Social Web,
http://www.readwriteweb.com/archives/collaborative_filtering_social_web.php

[6] Reddit, http://www.reddit.com

[7] Delicious, http://www.delicious.com

[8] Digg, http://digg.com

[9] Rand Fishkin , Everything in the Digg, Reddit & Netscape Algorithms,
http://www.seomoz.org/blog/everything-in-the-digg-reddit-netscape-algorithms, 2006

[10] Geeking with Greg, 35% of sales from recommendations,
http://glinden.blogspot.com/2006/12/35-of-sales-from-recommendations.html, 2006

[11] G. Linden, B. Smith, J. York, Amazon.com recommendations: Item-to-item collaborative filtering,
IEEE Internet Computing, 2003.

[12] Robert M. Bell, Yehuda Koren and Chris Volinsky, The BellKor 2008 Solution to the Netflix
Prize, AT&T Labs – Research, 2008

[13] James Bennett, Stan Lanning, The Netflix Prize, Netflix, 2007.

[14] Yehuda Koren, Factor in the Neighbors: Scalable and Accurate Collaborative Filtering, Yahoo!
Research, 2009

[15] Wikipedia, Collaborative filtering, http://en.wikipedia.org/wiki/Collaborative_filtering

[16] Ron Zacharski, A Programmer's Guide to Data Mining, http://guidetodatamining.com

[17] Toby Segaran, Programming Collective Intelligence: Building Smart Web 2.0 Applications,
O'Reilly, 2007.

[18] Nava Tintarev, Judith Masthoff, A Survey of Explanations in Recommender Systems, University
of Aberdeen, 2007.

[19] Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl, Incremental Singular Value
Decomposition Algorithms for Highly Scalable Recommender Systems, University of Minnesota,
2002

[20] Simon Funk, Netflix Update: Try This At Home, http://sifter.org/˜simon/journal/20061211.html,
2006.

[21] M. W. Berry, S. T. Dumais, G. W O’Brian, Using Linear Algebra for Intelligent Information
Retrieval, SIAM Review, 1994

[22] Wikipedia, Overfitting, http://en.wikipedia.org/wiki/Overfitting

[23]

Arkadiusz Paterek, Improving regularized singular value decomposition for collaborative filtering,
Warsaw University, 2007

[24]

Robert Bell, Yehuda Koren, Chris Volinsky, The BellKor solution to the Netflix Prize, AT&T Labs
– Research, 2007

[25] Wikipedia, Boltzmann machine, http://en.wikipedia.org/wiki/Boltzmann_machine

[26] The Official YouTube Blog, Five Stars Dominate Ratings, http://youtube-
global.blogspot.com/2009/09/five-stars-dominate-ratings.html, 2009

[27] The Scala Development Team, Scala in the Enterprise, http://www.scala-lang.org/node/1658

