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Abstract 
I propose to implement a recommendation system, using collaborative filtering 

techniques, for the interactive online community Deep Underground Poetry. Using data 
which has been collected from members, I intend to compute a list of suggested 

reading which is personalised to each user. The engine will need to respond quickly to 
changes in data in order to give users up to date recommendations. The overall aim of 

the system is to promote interaction between members by increasing the number of 
views, ratings and comments each poem receives, by guiding people towards poems 

which they should enjoy. 
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Introduction 
1.1 Giving the People What They Want 
 In August 2009 I re-launched an online creative writing community called Deep Underground 
Poetry (DU Poetry) [1], which I originally started in 1999. For ten years, the website had been offline 
and the internet had changed enormously during this time. However, through re-establishing DU 
Poetry over the last few years, it became apparent that one of the key challenges still remained; 
finding ways to encourage people to read and comment on other peoples’ submissions. Giving 
members the feedback and attention they crave is a key part of creating a thriving community and 
retaining an active membership. Discussions related to this issue frequently crop up on the DU Poetry 
“suggestions” forum. In addition, a homepage poll showed that feedback from others was important to 
more than half of respondents [2]. 

 

Fig.1 Screen grab from DU Poetry, take on 8th April 2011. 

 

 There are a number of ways in which online poetry communities have tried to increase 
commenting levels. Some websites force their members to make comments, so as to artificially 
increase the number of comments made. For example, GS Poetry [2] requires members to gain 
credits by making comments before they are allowed to “showcase” a poem. GotPoetry [3] implements 
a “karma” system, to stop less active members from rating poems without leaving a comment. DU 
Poetry offers incentives, like extra exposure for their poems, to “top-critiquers” (members who make 
lots of useful comments).  Despite these efforts, the average number of comments that each poem 
receives still remains relatively low; currently less than 1.5 comments per poem on DU Poetry. In 
addition, the risk of enforcing measures is that the quality, usefulness and comprehensiveness of the 
feedback is diminished. Keen to explore more organic ways to increase the number of comments; I 
created another DU Poetry poll asking whether people were more likely to comment on poems they 
liked, or poems they disliked [4]. To date, 100% of respondents have answered that they more often 
comment on poems that they like. My challenge is to find a way for people to more easily and quickly 
discover poems that they might actually want to read and comment on. I also hope to address the 
issue of maintaining exposure for older submissions, which no longer appear on the first few pages of 
listings, and can therefore go undiscovered by new members.  

 Developments in technology (hardware, software and connection speeds) have made it 
possible to collect vast amounts of data from users and with this has come the increased use of 
collaborative filtering (CF). CF is a way of analysing information with the filtering process shared 
among a large group of people. Unlike conventional media like newspapers and television, where 
there are a few editors controlling output, the CF model can have infinitely many editors and improves 
as the number of participants increases [5]. If I can manipulate data about which poems my members 
respond to positively, then I can then use this to provide them with a list of personalised 
recommendations (poems they haven’t read yet, but should theoretically enjoy). 
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 1.2 Existing Recommendation Systems 
 Many successful websites use collaborative filtering techniques to implement some form of 
recommendation engine. This could be something which looks relatively simple on the surface, such 
as keeping track of positive votes (upvotes or “thumbs up”) and negative votes (downvotes or “thumbs 
down”). For example, Reddit [6], Delicious [7] and Digg[8] gauge the popularity of user posted links, 
based on analysing positive and negative votes. However, the algorithms involved in this process may 
be far more complex then they appear at first glance. Although these websites keep the specifics 
private (to avoid abuse of the system), much hypothesising takes place on forums and blogs as to 
what’s involved in the underlying algorithms. Suggestions include; the domain of the link, the profile of 
the submitter, profiles of the voters, similarity to other links, the source of the votes and the number of 
views and comments the link receives [9]. 

 When Greg Linden, the creator of Amazon’s recommendation engine, left Amazon in 2002 he 
reported that over 20% of sales came from personalized recommendations, the figure is estimated to 
be even higher today [10]. Amazon’s recommender system suggests products to customers based on 
their past purchases and the items they currently have in their shopping basket. The idea is similar to 
that of placing impulse buy items near a supermarket checkout, but Amazon’s suggestions are 
targeted to each customer. An item-to-item collaborative filtering algorithm was developed in order to 
handle the massive data set involved and achieve the scalability and performance they required. The 
key to its success was that the computationally expensive task of creating the “similar items” table 
takes place offline. The online part (looking up similar items for a particular user) scales independently 
of the size of the overall data set, so the system remains fast despite the huge amount of data 
involved [11]. The algorithm also performs well with limited user data; it is able to produce 
recommendations based on just a few items. 

 Netflix is an American company that offers on-demand video streaming and online requests 
for video rentals. In 2006, Netflix deemed their film recommendation feature so critical to their 
business that they launched the “Netflix Prize” competition. They offered one million dollars to the 
winning team, if they could beat the accuracy of their “Cinematch” recommendation system by more 
than 10%. The competition ended in 2009 and the winning team BellKor's Pragmatic Chaos published 
a paper outlining the techniques they used. This included identifying a number of temporal effects 
which influenced the ratings a user gave; movie bias (film popularity fluctuations), user bias 
(fluctuations in how harshly the user rated things) and user preferences (for example, a fan of one 
genre may later become a fan of another, related genre) [12]. The “Netflix Prize” sparked a surge of 
interest and development in the area of recommendation systems [13]. Many of the papers cited in 
this proposal were published as a direct result of the progress made by those who took part. 

  

1.3 Aims and Objectives 

  I intend to provide members with a personalised list of recommended reading and also display 
a selection of “poems like this” on each poem's page. My key objectives are: 

ñ Tune an algorithm to give quantitatively “accurate” recommendations (see section 2.3). 

ñ Look for patterns in users' tastes in relation to characteristics like their age and location. 

ñ Build an efficient and scalable system which reacts quickly to new information. 

ñ Develop the system in response to implicit and explicit feedback from users. 
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Theory 
2.1 An Introduction to Collaborative Filtering 

Recommendation engines use collaborative filtering (CF) as a method of making automatic 
predictions about which items will suit a user (filtering), by collecting information about the past actions 
of many users (collaboration). CF techniques don’t rely on specific domain knowledge and can be 
applied to sparse data sets, thereby avoiding the need for comprehensive data collection (it should not 
be necessary for a user to evaluate a vast number of items). Yehuda Koren (one of the members of 
the winning Netflix Prize team) outlines two main approaches to CF; the neighbourhood approach and 
latent factor models [14], these can also be described as memory-based and model-based [15].  

 
 
2.2.1 The Neighbourhood Approach (Memory-Based) 

Neighbourhood based models are currently the most common approach to CF [14]. They use 
some form of the k-nearest neighbours algorithm (k-NN) to compute the relationship between items, or 
between users. k-NN is a simple machine learning algorithm where an item is classified by the 
average of its k nearest neighbours, where k is a positive integer, typically small (for example, if k = 1 
then the unknown rating would get the value given by the most similar user who has rated that item). 
The best value for k is application specific and can only be found by experimenting with the data set. It 
is typical for a weighted average to be used, with the closest (most similar) neighbours contributing 
more. To work out which are the closest neighbours, a distance metric is used. A simple example is 
Euclidean Distance which measures a straight line distance between two points (X and Y) using the 
following algorithm: 

 
Applying this to real data involves comparing two items (as if they were axes on a graph), 

using the ratings given by users who have ranked both items. I have used sample data from DU 
Poetry with ratings computed based on user actions (member and poem IDs have been concealed for 
data protection purposes). 

 
 User 1 User 2 User 3 User 4 
Poem A 1 3 2 3 
Poem B 2 3 0   1 

Fig. 2 Sample data from DU Poetry 
 

Poem A has coordinate (1, 3, 2, 3) and poem B has coordinate (2, 3, 0, 1) so the Euclidean 
Distance between poem A and poem B is:  
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 An even simpler alternative to Euclidean Distance is Manhattan Distance, where the differences 
between the co-ordinates are absolute values (not squared or square rooted). The Manhattan Distance between 
poem A and poem B is 3. Both of these distance metrics can be generalised as Minkowski Distance, where 
r in the following algorithm can be any number. The greater the value of r, the more that a difference in 
one dimension will influence the total difference [16]:  

 
 

When we are working with a data set where there are unknown values, it is necessary to 
compensate for the fact that the distance is likely to be shorter where users have lots of ratings in 
common; creating a false sense that they are more similar then they actually are. This can be 
remedied by dividing the total distance by the number of dimensions (items which both users have 
rated). 

An issue with Minkowski Distance is that it doesn’t allow for differences in the way users rate 
items, for example, one user may rate things more generously than another (referred to as “grade 
inflation”). The Pearson correlation coefficient is a more sophisticated way of determining similarity, 
which can correct this problem [17]. It is a measure of the correlation between two variables ranging 
from -1 to 1 inclusive; 1 indicates perfect agreement (all data points lying on a line for which Y 
increases as X increases) and -1 indicates perfect disagreement (all data points lie on a line for which 
Y decreases as X increases). A value of 0 implies that there is no linear correlation between the 
variables.  

A number of other distance metrics exist including; cosine similarity which measures the 
similarity between two vectors by finding the cosine of the angle between them and Jaccard index 
which measures the similarity between sets. Finding the most effective distance metric to use will be a 
key part of developing the algorithms for my recommendation engine. 

K-NN suits collaborative filtering well because it’s an “online technique”, meaning that new 
data can be added without having to retrain the data or estimate new parameters [17]. This means the 
system is able to provide updated recommendations immediately after a user has entered new 
feedback. However, for new items the system cannot respond immediately, as it needs to learn the 
new parameters [14]. This fits well with my intentions as the engine will need to be able to provide 
recommendations quickly to active new members, but won’t need to promote the most recent poem 
submissions (as they will start out featuring prominently in listings). Another advantage of 
neighbourhood models is that they are explainable; it’s possible to identify which past user actions 
have been the most influential in predicting which items to recommend [14, 17]. This can enrich the 
experience for the user in a number of ways; giving them information about how and why the 
recommendations were selected, building confidence in the system and allowing them to tell the 
system when it’s wrong [18].  

However, k-NN suffers from a major weakness; its relatively high computational cost. This is 
because every user must be compared to every other user in order to determine which are its closest 
neighbours [17], this limits the scalability of the neighbourhood approach. 
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2.2.2 Latent Factor Models (Model-Based) 
  Model-based approaches include neural networks, Bayesian networks and models using the 
linear algebra technique of singular value decomposition (SVD), in order to factorise a user-item 
ratings matrix. Recently, SVD models have become popular for collaborative filtering due to their 
accuracy and scalability [14, 19].  Rather than directly setting out to make predictions, instead they 
use machine learning to characterise the data and uncover the underlying causes (factors) that work in 
combination to describe the data set [17].  

The idea is to decrease the amount of computation required by reducing the size of the matrix. 
Instead of comparing every object (item or user) to every other object, instead you define each object 
by a number of factors. For example, when the items are poems, factors which might emerge may be 
related to how funny or sad a poem is. Rather than having to manually define these characteristics, 
the algorithm finds patterns in the existing data and discovers the generalisations (also called 
eigenvectors) for itself. Imagine a data set of 1000 users and 15000 items; this would involve 1000 x 
15000 = 15000000 computations. However, if each object had just 40 factors, that could be used to 
compare it to other objects, then it would only require 40 x (1000 + 15000) = 640000 computations 
[20]. Given a m x n matrix A with rank r (the number of factors which we want to define items by), the 
singular value decomposition SVD(A) is defined as: 
 

SVD(A) = U x S x V T 
 

Matrix S is a diagonal matrix called the singular having only r nonzero entries (r x r), which 
means the effective dimensions of the orthogonal matrices U and V are m x r and r x n respectively. 
The first r columns of U and V represent the eigenvectors associated with the r factors of AAT and ATA. 
For the matrix A it can be said that the columns corresponding to the r values span the column space 
in U and the row space in V. The following illustration represents this on a very small scale: 
 

 
 
 
   
 
 

 
For this example (using an r value of 2) the algorithm has identified the two most prevalent 

characteristics by which to describe users and poems (sad and funny). Each poem is given a value for 
each characteristic and every user has a value representing how much they like that characteristic. By 
multiplying the two matrices together we get a representation of the original matrix (which is a “marks 
out of ten” rating made by each user for each poem). We can see that User 2 has given Poem 1 a 
high mark and this was factorised into both being given a high value for the factor 2 characteristic 
“funny”. 

One possible advantage of the low-rank approximation resulting from SVD is that the resulting 
data may in fact be better than the original full matrix, as the process may actually filter out some 
unwanted “noise” from the data [21]. However, the opposite may also be true, especially when 
applying SVD to collaborative filtering, due to the high proportion of missing data. Addressing only the 
known values is prone to overfitting (where there aren’t enough values to consider, so a random error 
or “noise” value may be given undue influence over results [22]). Variations of SVD have been 
developed to try and address this problem [23]. One notable example is that of incremental SVD, 
devised by Simon Funk during the “Netflix Prize” competition [20]. He incorporates a technique for 
regularising the model in order to identify abnormal values and avoid overfitting.  
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2.2.3 Hybrid Approach 
When the Bellkor team won their progress award during the “Netflix Prize” competition in 

2007, their solution consisted of blending the results of 107 algorithms [24]. They used the approaches 
I have described above, along with Restricted Boltzmann Machines (a type of neural network [25]) and 
regression models. Their research indicates that predictive accuracy can be greatly improved by 
blending different approaches, instead of refining a single technique. 
 

 
2.3 Accuracy Testing 

If a number of known values are removed from a data set and then computations are 
performed on the remaining data, the resulting values can be compared with the actual values in order 
to access the accuracy of the algorithm. In statistics, the mean squared error (MSE) is one way of 
quantifying the difference between the estimated values and the true values. It works by squaring the 
difference between each of the actual values and the estimations, then adding them together and 
diving by the total number of predictions. For example, if an algorithm predicted two item ratings as 2.5 
and 3, and the actual values were 4 and 2 then the MSE would be: 

 

(1.5 x 1.5) + (1 x 1) = 2.25 + 1 = 3.25 / 2 = 1.625 

 

 Root mean square error (RMSE) is slight variation on MSE and is useful when 
communicating results to others because the RMSE is measured in the same units as the data, rather 
than in squared units, so it’s representative of the size of an actual "typical" error. The RMSE of the 
values above is simply the square root of the result, so 1.275. The “Netflix Prize” used RMSE as the 
accuracy metric for judging the entries [13]. 

An alternative to this is mean absolute error (MAE) which is less sensitive to large prediction 
errors. It is simply the average of the absolute errors, so for the values above:  

 

(1.5 + 1) / 2 = 1.25 

 

By dividing the known DU Poetry data into segments, and using these estimators on each part 
independently, I will be able to assess the quantitative accuracy of my algorithms. 
  
 
 
Development 
3.1 The Existing System and Data Set 

Like any website starting out on a new domain name (without a budget for promotion) it has 
taken DU Poetry time to gain popularity and establish reasonable search engine rankings. The amount 
of new members signing up continues to increase month on month, with 199, 252 and 279 new 
members joining in January, February and March of 2011 respectively. The number of active 
members; those logging in within the last two months, is approximately 1000 and the total number of 
poems published exceeds 15000. 
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Fig. 3 An entity-relationship model using Chen notation, showing relevant tables and 

attributes in the existing DU Poetry MySQL database. 
 
 
 

There are a number of features which I have implemented in order to gauge a member’s 
reaction to a poem. These include an anonymous “like this?” option and a personal reading list, to 
which a member can add their favourite poems. In addition, a member can “follow” another member 
poet, this means they receive a message in their updates feed each time that member makes a new 
submission. Poem views are also logged, in order to keep track of which members have viewed which 
poems. Below is a summary of each of these features, along with the current usage statistics (from the 
website's MySQL database, queried on 11th April 2011): 

 

Feature Launch Date  Total 
Entries 

Entries Last Month 
(March ‘11) 

Reading List 30th December 2009 3749 490 

Poem Views 11th July 2010 63976* 12691* 

Followers 11th July 2011 2514 425 

Likes 25th February 2011 3855** 2328** 
          

* I have only included poem views made by members (counting only the 
most recent for any given poem), anonymous visitors are not included.  

** “Likes” which also have an associated reading list entry are not included; a 
reading list entry takes precedence over a “like”. 
 
 

  
 During the last month, since the “like” feature has been launched, there has been a significant 
increase in the amount of data collected. Over 22% of the time when a member views a poem it 
results in a positive action; a “like” or reading list entry.  
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I have always been keen to avoid a “marks out of five” style ratings system for poems, 

because it doesn’t fit well with the creative nature of the content. There is also strong evidence that 
five-star ratings systems don’t work. YouTube has abandoned its five star ratings system, switching 
instead to a simpler "Like / Don't Like" model, because almost all videos were receiving the maximum 
(five stars) rating from users [26]. For the DU Poetry recommendation engine, I intend to use the data 
which I currently collect in order to “simulate” poem ratings. For example, a followed author's poems 
may count as a rating of 1, a “like” count as a 2 and a reading list entry count as a 3. Although poem 
views may not have a major impact on the algorithm, they are useful in determining which poems a 
user has already looked at, so as not to recommend them poems which they have already read. 

 
 

3.2 Implementation and Operational Issues 
  Although DU Poetry is coded primarily in Perl, I have decided to write my project in Scala 
because I would like to learn a new programming language. Scala is widely considered a reliable and 
scalable language, which has grown in popularity very quickly since its release in 2003, and has been 
adopted by major websites like Twitter and LinkedIn [27]. I am aware that it may take longer and also 
be more challenging to write code in an unfamiliar language. 

  Integrating my recommendation engine into the current DU Poetry website may present some 
complications. One consideration is how best to fit the Scala code into the current Perl HTML template 
system. Furthermore, the website is currently hosted on a shared web server and there are limits in 
place restricting the maximum number of simultaneous database connections. I also have very little 
control over the database settings. If this presents a problem I may need to implement a separate 
database structure for the recommendation engine, or move the website onto a semi-dedicated (virtual 
private) hosting package.  

  The user testing aspect of development may also present challenges, as I will be relying on a 
core membership of dedicated members to trial the system and provide me with timely feedback. 
Depending on how complete and user friendly the system is during the development process, I may 
have to limit the number of members involved in testing. In which case, along with managing the 
expectations of volunteers, I will also have to deal with any social issues which emerge, as a result of 
choosing the participants. 

  The sparse nature of the data set (outlined in 3.1) may restrict my choice of suitable 
algorithms. However, if growth continues at the current rate, then the amount of data collected should 
more than double over the next three months, with the number of “likes” set to more than triple. This 
issue may also be helped by the fact that a “followed” poet can contribute multiple ratings because 
every poem by the “followed” author is included. The average number of poems by each member, 
currently being followed by at least one other member, is 24. 
 
 

3.3 Results and Analysis 
It is recognised that accuracy metrics (outlined in section 2.3) can only partially evaluate a 

system; user satisfaction (for example, the diversity of recommendations given and the user’s trust in 
the system) are increasingly seen as important [15]. Throughout development I will be making full use 
of the fact that I have real data and real people to interact with, by collecting data both implicitly and 
explicitly. Direct feedback will be requested from users to help ascertain how useful each 
recommendation was and at the end of the process I will produce a questionnaire to assess the 
general response of participating members.  
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I also intend to produce statistics from tracking the actions taken (views, “likes”, comments 

and reading list entries) on poems which have been recommended. Benchmarks for assessing the 
results will be calculated from existing response levels, for example, to date there are 62550 recorded 
poem visits by members, and 13441 (or 21.5%) of these resulted in a comment being made (not 
including members viewing or adding comments to their own poems). Another consideration is the 
submission dates of the poems being recommended. I intend to compare the ratio of old and new with 
that of the current levels, to see if more exposure for older poems has been achieved. A sizeable 37% 
of poem views on DU Poetry during the last week relate to poems submitted during this time, despite 
them making up only 3% of the total poems. 

 
 
3.4 Time Line 

WEEK KEY TASKS 
1 Learn Scala basics 

2 Code up first iteration of test algorithms using data snapshot. 

3 Create front end for testing and collecting feedback from users. 

4 Implement and collect results from first iteration code, address any front end 
usability issues raised by users. 

5 Write code for second iteration. 

6 Implement and collect results from second iteration, work out solution for efficient 
access to live data (for the system and for users). 

7 Analyse what part user characteristics (age, location etc.) play in ratings, and see if 
the algorithms can be improved using this information, produce third iteration code. 

8 Implement and collect results from third iteration, implement data access (and real 
time updates) solution. 

9 Study results and feedback so far and produce a final iteration code. 

10 Implement and collect results from final iteration, produce questionnaire. 

11 Look at scalability issues to future proof the recommendation engine, such as data 
mining optimisations and cloud computing. 

12 Evaluate the project; collect questionnaires and produce graphs and statistics of all 
results so far. 

13  Write up project. 
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